
UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

DEPARTAMENTO DE ENGENHARIA MECATRÔNICA

DESENVOLVIMENTO DE MICRORROBÔ MÓVEL

AUTÔNOMO

MATHEUS MAURÍCIO PEREIRA CASTRO

SÃO PAULO

2007

MATHEUS MAURÍCIO PEREIRA CASTRO

DESENVOLVIMENTO DE MICRORROBÔ MÓVEL AUTÔNOMO

Projeto de Conclusão de Curso

apresentado à Escola Politécnica da

Universidade de São Paulo para

obtenção do título de Engenheiro

Área de Concentração:

Engenharia Mecatrônica

São Paulo

2007

MATHEUS MAURÍCIO PEREIRA CASTRO

DESENVOLVIMENTO DE MICRORROBÔ MÓVEL AUTÔNOMO

Relatório Parcial do Projeto de

Conclusão de Curso II apresentado

à Escola Politécnica da

Universidade de São Paulo

Área de Concentração:

Engenharia Mecatrônica

Orientador: Prof. Dr. Jun Okamoto

Júnior

São Paulo

2007

FICHA CATALOGRÁFICA

Castro, Matheus Maurício Pereira
 Desenvolvimento de microrrobô móvel autônomo − São
Paulo, 2007.

 Trabalho de Formatura − Escola Politécnica da
Universidade de São Paulo. Departamento de Engenharia
Mecatrônica e de Sistemas Mecânicos.

 1.Robôs 2.Hardware (Controle) 3.Software (Controle)

AGRADECIMENTOS

 Agradeço ao meu orientador, Prof. Dr. Jun Okamoto Jr., por suas

valiosas orientações, inspirando grande motivação e transmitindo muita

confiança durante toda a condução deste trabalho.

 Agradeço ao Engenheiro José Carlos dos Santos pelo constante

incentivo e apoio técnico, imprescindíveis para a conclusão deste projeto.

 Agradeço ao Laboratório de Percepção Avançada do Departamento de

Engenharia Mecatrônica da Escola Politécnica da USP por fornecer toda infra-

estrutura técnica e apoio financeiro.

 Agradeço à minha família, que indiretamente contribuiu, com seu apoio e

incentivo, para o bom andamento deste projeto de conclusão de curso.

Os que se encantam com a prática

sem a ciência são como os timoneiros

que entram no navio sem timão nem

bússola, nunca tendo certeza do seu

destino.

(Leonardo da Vinci)

RESUMO

 O presente projeto diz respeito ao desenvolvimento de um robô móvel

autônomo de pequeno porte, sendo que o foco das atividades é dado ao

desenvolvimento de hardware e software de controle. Este robô é composto de

uma pequena plataforma móvel com duas rodas acionadas independentemente

por dois motores de passo, sendo que o controle de posicionamento é feito em

malha aberta. O robô possui sensores infravermelhos de distância, os quais

são responsáveis pela percepção do ambiente no qual o robô está inserido. Há

ainda um sistema de interface com o usuário, composto por botões e um

display de cristal líquido. O software do robô é dividido hierarquicamente em

dois níveis: baixo nível e alto nível. A camada de baixo nível diz respeito ao

software de controle, o qual trata da execução das tarefas essenciais do robô,

como, por exemplo, o acionamento dos motores e a leitura dos sensores. A

camada de alto nível refere-se ao software de aplicação do robô, isto é, o

software específico para que o robô cumpra uma determinada tarefa, que,

neste caso, consiste em vagar pelo ambiente desviando de obstáculos.

ABSTRACT

This project concerns about the development of a small autonomous

mobile robot, being the activities focused on the development of controlling

hardware and software. The robot has a small two-wheeled mobile platform

driven by two stepper motors, which are under open loop positional control.

Infrared distance sensors are responsible for the environmental perception. In

addition, pushbuttons and a liquid crystal display allow a user interface system.

The robot software is divided in two levels: low level and high level. The low-

level layer is related to the controlling software, which executes the robot

essential tasks, like driving the stepper motors and acquiring the sensor signals.

The high-level layer runs the algorithm responsible for the accomplishment of

some task, which is, in this project, the mission of exploring the environment,

avoiding obstacles.

 SUMÁRIO

1 INTRODUÇÃO .. 10

2 OBJETIVO ... 11

3 HARDWARE.. 12

3.1 PLATAFORMA MÓVEL .. 12

3.2 HARDWARE DE CONTROLE .. 14

3.2.1 Módulo de Processamento ... 15

3.2.1 Módulo de Acionamento ... 16

3.2.2 Módulo de Sensoriamento .. 17

3.2.3 Módulo de Interface com o Usuário ... 19

3.2.4 Módulo de Alimentação ... 20

3.3 MONTAGEM... 21

4 SOFTWARE .. 27

4.1 ACIONAMENTO DOS MOTORES DE PASSO 27

4.2 SOFTWARE DE CONTROLE .. 29

4.2.1 Acionamento dos Motores de Passo ... 30

4.2.2 Sensoriamento do Ambiente .. 34

4.2.3 Interface com o Usuário .. 35

4.3 SOFTWARE DE APLICAÇÃO .. 38

4.2.3 Menu de Opções .. 38

4.2.3 Algoritmo de Exploração do Ambiente .. 39

5 RESULTADOS .. 42

6 CONCLUSÕES ... 46

REFERÊNCIAS .. 47

APÊNDICE A – Esquema do Circuito Elétrico 48

APÊNDICE B – Layout da Placa de Circuito Impresso 49

APÊNDICE C – Código Fonte do Programa 51

10

1 INTRODUÇÃO

 A robótica móvel é atualmente uma das áreas de vanguarda nas

instituições de ensino e de pesquisa em todo o mundo, sendo que há um

interesse cada vez maior nas aplicações comerciais que vêm surgindo nesta

área. A robótica móvel possibilita a atuação não-supervisionada de máquinas

em tarefas complexas que requerem interação com o meio físico. Busca e

salvamento de sobreviventes em situações de catástrofe, detecção de fogos

em florestas, transporte de objetos, vigilância e limpeza de grandes áreas,

exploração subaquática ou planetária, aplicações em agricultura (colheita

autônoma, tratamento da terra, semeadura, etc.) constituem alguns exemplos

de robôs móveis. A adoção comercial de robôs móveis autônomos tem

ganhado recentemente um novo ímpeto através do aumento da sua taxa de

crescimento e de desenvolvimento, graças à disponibilidade de simuladores e

sistemas de hardwares a preços acessíveis (COSTA, 2003).

 Dentro deste contexto promissor surgiu o interesse em se desenvolver o

presente trabalho, o qual trata da concepção de um robô móvel autônomo de

pequeno porte. Este robô é batizado neste projeto como robô Jerry, sendo que

o mesmo foi inspirado em robôs de uma competição para resolver labirintos - a

competição Micromouse. Esta competição é um evento que acontece em

várias partes do mundo, onde microrrobôs competem com a finalidade de

resolver um labirinto no menor tempo possível.

 O projeto e a construção do robô Jerry é uma atividade que

efetivamente envolve a combinação integrada de mecânica, eletrônica e

computação. Desta forma, o desenvolvimento deste projeto de conclusão de

curso provê uma oportunidade ímpar para se trabalhar todos os aspectos de

um projeto genuinamente mecatrônico.

11

2 OBJETIVO

 Este trabalho tem o objetivo de integrar e consolidar os conhecimentos

obtidos durante o curso através do projeto completo de um sistema

mecatrônico. Para isto, este projeto pretende o desenvolvimento de um robô

móvel autônomo de pequeno porte (robô Jerry).

 O desenvolvimento do robô Jerry envolve duas etapas distintas. Na

primeira etapa tem-se como meta o desenvolvimento do protótipo físico do

robô, o qual será composto de uma pequena plataforma móvel e um hardware

de controle. Já na segunda etapa trata-se da programação do robô Jerry, o que

envolve o desenvolvimento de toda uma estrutura de software de controle do

robô, bem como o desenvolvimento de um software de aplicação para que o

robô cumpra uma determinada tarefa.

12

3 HARDWARE

 O hardware do robô Jerry diz respeito ao protótipo físico do robô, sendo

este composto de uma plataforma móvel (estrutura eletro-mecânica) e de um

hardware de controle (circuito eletrônico). Este protótipo apresenta duas rodas

acionadas independentemente por dois motores de passo, sendo que o

controle de posicionamento será feito em malha aberta. Sensores

infravermelhos de distância são responsáveis pela percepção do ambiente no

qual o robô está inserido. O robô conta ainda com um sistema de interface com

usuários, composto por botões, leds sinalizadores, e um display de cristal

líquido.

3.1 PLATAFORMA MÓVEL

 Decidiu-se por comprar de um fornecedor especializado uma plataforma

móvel adequada ao projeto, resolvendo-se, desta forma, praticamente toda a

questão da estrutura eletro-mecânica.

 A plataforma móvel utilizada no projeto é a AIRAT2 (Figura 3.1) do

fornecedor Active Robots Ltd. Esta plataforma é composta por um chassi de

alumínio, duas rodas de alumínio revestidas com borracha, dois apoios

esféricos (ball-casters), e dois motores de passo acoplados às rodas.

 As rodas são acionadas por dois motores Sanyo H546 (Figura 3.2).

Estes são motores de passo híbridos com 1,8º de ângulo de passo. Eles

operam com tensão nominal de 3,15 V e corrente elétrica de 1 A, fornecendo

um torque estático de 0,147 N.m.

 A locomoção do robô através desta plataforma se dá pelo acionamento

diferencial das duas rodas, conferindo ao robô a possibilidade translação

retilínea (para frente ou para trás), translação curvilínea e rotação em torno do

próprio eixo. A estabilidade do movimento é garantida pelos apoios esféricos.

13

Figura 3.1 - Plataforma eletro-mecânica AIRAT2

Figura 3.2 - Motores de passo Sanyo H546

 A Tabela 3.1 apresenta as especificações gerais da plataforma móvel

AIRAT2.

14

Tabela 3.1 - Especificações da plataforma móvel AIRAT2

Item Descrição

Tamanho da
Plataforma

88 mm x 114 mm (largura x comprimento)

Frame do
Chassi

144 mm x 67 mm (alumínio)

Roda
Roda de alumínio (ø51.3 mm com borracha) x 2, ball

caster tamanho pequeno x 2

Motor Motor de passo híbrido (Sanyo H546) x 2

3.2 HARDWARE DE CONTROLE

 Este hardware foi projetado para desempenhar quatro funções básicas:

 Acionar e controlar os motores de passo;

 Fazer o sensoriamento do ambiente externo;

 Permitir uma interface com o usuário;

 Fornecer alimentação elétrica adequada para o circuito elétrico.

 As três primeiras funcionalidades citadas são gerenciadas pelo módulo

de processamento do hardware (microcontrolador).Na Figura 3.3, é mostrado o

esquema geral do hardware de controle e monitoração do robô.

 O projeto do circuito eletrônico e o layout da placa de circuito impresso

foram elaborados com o auxílio do pacote de softwares OrCAD® da empresa

Cadence®. Duas ferramentas deste pacote de software foram utilizadas: o

OrCAD Capture, o qual foi usado para criar o projeto do circuito eletrônico em

sua forma esquemática (referencie o Apêndice A para consultar o esquema

elétrico completo do hardware); e o OrCAD Layout, o qual foi usado para

projetar a disposição física dos componentes e circuitos na placa de circuito

impresso (referencie o Apêndice B para consultar o layout da placa).

15

Figura 3.3 - Diagrama Esquemático do Hardware

3.2.1 Módulo de Processamento

 O módulo de processamento é composto por um microcontrolador de 28

pinos, o PIC16F873 do fabricante Microchip Technology Inc. Este

microcontrolador possui 8K x 14 words de memória FLASH, 368 x 8 bytes de

memória RAM, 256 x 8 bytes de memória EEPROM, 5 canais conversores

analógico-digital, e será operado com uma freqüência de clock de 20MHz.

 Este módulo é responsável por controlar o acionamento dos motores,

fazer a aquisição dos sinais dos sensores, gerenciar a interface com o usuário,

e ainda executar o software de aplicativo da tarefa a ser cumprida pelo robô. A

Figura 3.4 mostra o diagrama simplificado deste sistema.

Módulo de

Alimentação
Módulo de

Processamento

Módulo de

Acionamento

Módulo de

Sensoriamento

Módulo de

Interface

Usuário

H546

M

Baterias

Ambiente

Externo

Sinal Analógico

dos Sensores

Comandos de
Entrada e Saída

de Dados

Comandos de
Acionamento
dos Motores

5,0 V

14,4 V

5,0 V

5,0 V

5,0 V

14,4 V

Fases

16

Figura 3.4 - Representação Simplificada do Módulo de Processamento

3.2.2 Módulo de Acionamento

 O módulo de acionamento é responsável por acionar

independentemente as duas rodas do robô através de cada um dos motores de

passo (motor H546). Este sistema está representado simplificadamente pela

Figura 3.5, e é composto por duas partes principais: o seqüenciador lógico

(circuito integrado L297) e o driver de potência (circuito integrado SLA7024). É

necessário ainda que o módulo de processamento (PIC16F873) envie os sinais

de comando de passo (clock), de sentido de rotação, e de habilitação para o

seqüenciador.

Figura 3.5 - Representação Simplificada do Módulo de Acionamento

 O seqüenciador lógico é um circuito lógico que controla a excitação das

bobinas do motor seqüencialmente, em resposta a um pulso de clock dado pelo

microcontrolador. No caso do robô Jerry, o seqüenciador L297 faz a excitação

do tipo two-phase-on para motores de quatro fases, isto é, duas das quatro

fases do motor H546, estão energizadas ao mesmo tempo em cada estado de

excitação. A Figura 3.6 mostra este tipo de seqüenciamento, onde os sinais A,

B, C e D representam cada uma das quatro fases do motor.

PIC16F873

Software de Aplicação

Sinal Analógico

dos Sensores

Comandos de
Entrada e Saída

de Dados

Comandos de
Acionamento
dos Motores

5,0 V

Controle do

Acionamento
 Processamento

Sensorial

Controle da

Interface

Canal A/D

20 MHz

PIC16F873 L297 SLA7024

clock

H546

M
sentido de

rotação

fase A

fase \A

fase B

fase \B

fase A

fase \A

fase B

fase \B Habilitação

17

Figura 3.6 - Seqüenciamento de Fases

 Os sinais de saída do seqüenciador lógico são transmitidos aos

terminais de entrada do driver de potência, através do qual é comandado o

chaveamento de corrente elétrica nas bobinas do motor. A função do driver é

servir como um buffer de amplificação de corrente entre o seqüenciador lógico

e o motor. O driver SLA7024 faz o acionamento por PWM (Pulse Width

Modulation). As vantagens deste tipo de acionamento são: o uso de uma única

fonte de tensão, a perda de potência é baixa, e a voltagem aplicada ao motor é

automaticamente ajustada para que o acionamento seja feito a uma corrente

elétrica pré-estabelecida. Resumindo, quando um pulso de clock é aplicado ao

seqüenciador, os seus terminais de saída mudam para controlar o driver, o

qual, por sua vez, faz o motor girar de um ângulo de passo.

3.2.3 Módulo de Sensoriamento

 Sensores infravermelhos de distância (sensor Sharp GP2D120, Figura

3.7) compõem o módulo de sensoriamento, o qual é responsável pela

percepção do ambiente no qual o robô está inserido. O sensor Sharp GP2D120

gera uma saída analógica inversamente proporcional à distância entre o sensor

e um anteparo (Figura 3.8). Esta saída pode ser diretamente enviada ao

microcontrolador PIC16F873, pois este dispositivo possui internamente um

módulo conversor analógico-digital, o que simplifica bastante a montagem do

circuito para este sistema (Figura 3.9).

18

 O conversor analógico-digital do microcontrolador possui cinco canais de

entrada, mas a placa do circuito possibilita doze posições de fixação para os

sensores de distância (Figura 3.10), permitindo, assim, diferentes

possibilidades de configurações de montagem para estes sensores. A Tabela

3.2 mostra as posições de fixação dos sensores que compartilham o mesmo

canal de entrada do conversor. É importante observar que não se deve

conectar mais de um sensor num mesmo canal de entrada, pois isto provocaria

um curto-circuito entre os sensores ligados em comum (consulte o esquema

elétrico no Apêndice A).

Figura 3.9 - Representação Simplificada do Módulo de Sensoriamento

 A configuração do robô Jerry utilizará 4 sensores, fixados nas posições:

J1, J2, J3 e J4. Esta configuração distribui os sensores uniformemente ao redor

do robô, permitindo uma monitoração uniforme do ambiente.

PIC16F873

GP2D120 Anteparo

Sinal
Analógico

Sinal
infravermelho

AD

Figura 3.7 - Sensor de
Distância Sharp

GP2D120 Figura 3.8 - Saída
(Analógica) do Sensor

Sharp GP2D120

19

Figura 3.10 - Posições Possíveis para Fixação dos Sensores

Tabela 3.2 - Ligação Elétrica entre
Canal A/D e Posição do Sensor

Canal A/D Posição do Sensor

AN0 J1

AN1 J2, J5, J9

AN2 J3, J6, J10

AN3 J4, J7, J11

AN4 J8, J12

20

3.2.4 Módulo de Interface com o Usuário

 O módulo de interface com o usuário conta com um display de cristal

líquido de caracteres (LCD H0802A, Figura 3.11), quatro LEDs de sinalização,

e cinco chaves do tipo pushbutton. Há ainda a possibilidade de um sinalizador

sonoro (buzzer). A Figura 3.12 mostra o esquema simplificado deste módulo.

Figura 3.11 - Vistas Frontal e Traseira do LCD

 O LCD é o principal dispositivo de saída para o usuário. Este

componente possui oito colunas e duas linhas no mostrador de caracteres,

sendo que cada caractere é formado por uma matriz de 5x10 pontos. Neste

display pode-se imprimir, por exemplo, mensagens de status do robô. A luz de

fundo do mostrador não será ligada neste projeto, a fim de se economizar

energia elétrica da bateria.

Figura 3.12 – Representação Simplificada do Módulo de Interface com o Usuário

Um dos cinco pushbuttons (botão reset) tem a função de reinicializar o sistema

operacional do robô Jerry. Os outros quatro podem ter funcionalidades que

variaram de acordo com a tarefa programada no robô.

PIC16F873

LEDs

Usuário

Buzzer

Pushbuttons

LCD

21

3.2.5 Módulo de Alimentação

 O módulo de alimentação é responsável por fornecer energia elétrica

para o motor e para toda a parte eletrônica do circuito do hardware.

Basicamente um regulador de tensão chaveado (circuito integrado LM2575)

compõe este sistema (Figura 3.13). Um conjunto de baterias de voltagem

nominal de 14,4V é utilizado como fonte de alimentação para o driver do motor

(SLA7024) e como tensão de entrada para o regulador, o qual fornece tensão

de saída de 5V para os demais componentes do hardware. Há ainda uma

chave de duas posições, atuando diretamente no fornecimento de energia para

o hardware, para ligar e desligar o robô.

Figura 3.13 – Representação Simplificada do Módulo de Alimentação

3.3 MONTAGEM

 As Figuras 3.14 e 3.15 mostram a placa de circuito impresso antes e

depois da montagem dos componentes eletrônicos.

Baterias

Unidades

Eletrônicas

5,0V
LM2575

14,4V

Unidades
de

Potência

Altas Correntes (~1A / motor)

Baixas Correntes

H546

M ON/OFF

22

Figura 3.14 – Placa de Circuito Impresso do Hardware de Controle

Figura 3.15 – Placa do Circuito Montada

Para a fixação do hardware de controle à plataforma móvel, utilizou-se

espaçadores para empilhar, sobre a plataforma, o dissipador de calor e a placa

23

de circuito impresso, sendo a fixação feita por parafusos e porcas. A Figura

3.16 associada à Tabela 3.3 mostra os elementos utilizados na montagem.

Figura 3.16 – Componentes de Montagem

Tabela 3.3 – Lista dos Componentes de Montagem

Item Descrição Quantidade

1 Parafuso Allen (M3x30mm) 4

2 Espaçador de poliestireno (ø7,5mm x 12,5mm) 4

3
Placa inferior de alumínio dissipadora de calor

(3mm x 675mm x 925mm)
1

4
Placa inferior de alumínio dissipadora de calor

(3mm x 470mm x 790mm)
1

5 Espaçador de poliestireno (ø7,5mm x 5,0mm) 2

6 Espaçador de poliestireno (ø7,5mm x 8,0mm) 2

7 Parafuso Allen (M3x7mm) 5

8 Porca (M3) 4

 Os espaçadores de poliestireno foram feitos a partir do tambor

transparente de uma caneta BIC®. Este material é interessante pelo fato de se

1

8

2 3 4

6

5

7

24

obter, através de lixação manual, uma boa precisão no comprimento do

espaçador (precisão por volta de 0,1mm). Além disto, o custo e a

disponibilidade do material são outras vantagens importantes. A função dos

espaçadores é sustentar o empilhamento das placas, de modo a se obter dois

vãos livres para acomodar os componentes da placa de circuito impresso e

toda a fiação do robô.

 Os parafusos Allen M3 x 7mm são usados para fixar os drivers SLA7024

e o regulador chaveado LM2575 no dissipador de calor (placas de alumínio).

Usa-se ainda uma pasta térmica entre os elementos condutores para melhorar

a condução de calor. As placas de alumínio possuem furos com rosca para os

parafusos M3 x 7mm do dissipador, e furos lisos para os parafusos M3 x 30mm

de sustentação (Figura 3.17). A placa superior é utilizada para permitir o

contato entre o dissipador e os componentes a serem dissipados sem que haja

interferência mecânica entre o dissipador e outros componentes da placa, com

por exemplo, os conectores do motor de passo.

Figura 3.17 – Dissipador de Calor

Furo com

Rosca

Furo sem

Rosca

25

 As Figuras 3.18 e 3.19 mostram o protótipo parcialmente montado. A fim

de se ter uma melhor clareza na visualização dos detalhes, mostra-se nestas

figuras apenas a placa de circuito impresso (sem os componentes eletrônicos,

bem como sem os parafusos M3 x 7mm do dissipador).

Figura 3.18 – Montagem do Hardware de Controle sobre a Plataforma (Vista Lateral)

Figura 3.19 – Montagem do Hardware de Controle sobre a Plataforma (Vista Frontal)

26

 Finalmente pode-se ver na Figura 3.20 o hardware de controle montado

sobre a plataforma móvel. As baterias são acomodadas nos compartimentos

frontal e traseiro da plataforma móvel, sendo as mesmas presas por fitas

adesivas.

Figura 3.20 – Hardware de Controle Montado

27

4. SOFTWARE

 O software do robô está dividido hierarquicamente em dois níveis: baixo

nível e alto nível. A camada de baixo nível diz respeito ao software de controle,

o qual trata da execução das tarefas essenciais do robô, como, por exemplo, o

acionamento dos motores e a leitura dos sensores. A camada de alto nível

refere-se ao software de aplicação do robô, isto é, o software específico para

que o robô execute uma determinada tarefa.

 Todo o programa está escrito em linguagem C, e o compilador utilizado

é o PCM C Compiler do fabricante CCS, Inc. Este é um compilador específico

para a família de microcontroladores PIC de 14 bits. O programa é gravado no

microcontrolador PIC16F873 do robô Jerry através do programador universal

TOPMAX do fabricante EETools, Corp.

4.1 ACIONAMENTO DOS MOTORES DE PASSO

 Uma vez que o robô utiliza motores de passo sem uma configuração de

realimentação de posição, deve-se evitar a todo custo que o motor emperre ou

perca passo. A solução para este tipo de problema é o acionamento com um

perfil de velocidades e acelerações adequados.

 Este robô está projetado para movimentar-se a baixas velocidades, e,

assim, podemos admitir que o motor fornece um torque (Troda) de cerca

0,05Nm. Portanto, em cada roda do robô, tem-se uma força (Froda) de:

N
T

F
roda

roda

roda 2

2

051,0

05,0

2




 (4.1)

 Como são duas rodas, a força de impulsão (F) do robô é:

NFF roda 42  (4.2)

28

 O robô possui uma massa (m) de cerca de 2 kg. Assim o robô deve ser

acionado com uma aceleração (a) de:

2/2
2

4
sm

m

F
a  (4.3)

 Então, sabendo que o motor tem uma resolução de Np = 200

passos/revolução, a aceleração em termos de números de passo (ap) é dada

por:

2/2482

200

051,0

2
spassos

N

a
a

p

roda

p 





 (4.4)

 Por segurança, seja ap = 2000 passos/s2.

Para acelerar o motor, deve-se emitir pulsos em intervalos de tempo

decrescentes até que se atinja uma taxa máxima. Da mesma forma, para

desacelerar o motor, deve-se aumentar o intervalo de tempo entre um pulso e

outro até que o motor pare. Estes intervalos de tempo podem ser calculados a

partir da equação de movimento com aceleração constante:

2

2

1
tas p (4.5)

 Sendo que aqui, s é a distância percorrida em número passos, ap é a

aceleração em passos/s2, e t é o tempo decorrido em segundos.

 Rearranjando a equação (4.5), tem-se:

pa

s
t




2
 (4.6)

 Assim, finalmente, pode-se calcular a tabela de velocidades utilizada

para o acionamento dos motores de passo:

29

Tabela 4.1 – Aceleração do Motor de Passo

s

(passos)
t

(segundos)

 t = ti - ti-1
(segundos)

Freqüência
(hertz)

0 0,000000 – –

1 0,031623 0,031623 31,623

2 0,044721 0,013099 76,344

3 0,054772 0,010051 99,494

4 0,063246 0,008473 118,018

5 0,070711 0,007465 133,956

6 0,077460 0,006749 148,170

7 0,083666 0,006206 161,126

8 0,089443 0,005777 173,109

9 0,094868 0,005426 184,311

10 0,100000 0,005132 194,868

11 0,104881 0,004881 204,881

12 0,109545 0,004664 214,425

13 0,114018 0,004473 223,562

4.2 BIBLIOTECA DO SOFTWARE DE CONTROLE

 O software de controle consiste de um conjunto de funções e rotinas que

tratam da execução das tarefas essenciais do módulo de processamento.

Estas tarefas essenciais podem ser enquadradas em três categorias, de acordo

com os módulos do hardware de controle com os quais estas tarefas estão

relacionadas. A primeira categoria compreende um conjunto de funções e

rotinas para se fazer o acionamento dos motores; a segunda cuida dos

30

procedimentos de aquisição dos sinais provenientes dos sensores de distância;

enquanto que a terceira categoria disponibiliza uma biblioteca para controlar os

dispositivos de interface com o usuário. Estes três grupos de bibliotecas

compõem o software de controle, o qual fornece uma plataforma para que o

algoritmo de aplicação do robô possa ser executado pela camada de software

de alto nível.

4.2.1 Acionamento dos Motores

 A seguir são nomeadas e descritas as funções e rotinas que compõem

esta biblioteca do software de controle. Esta categoria conta com três rotinas

principais:

MOTORENABLE

Sintaxe: motorEnable (enable)

Parâmetros: enable é uma variável booleana.

Retorno: Indefinido.

Descrição: Habilita ou desabilita o funcionamento dos motores

de passo (enable=FALSE: motores desligados;

enable=TRUE: motores ligados).

MOTORLEFT

Sintaxe: motorLeft (step, dir)

Parâmetros: step é uma variável inteira de 16 bits não-negativa.

dir é uma variável booleana.

31

Retorno: Indefinido.

Descrição: Esta rotina aciona o motor do lado esquerdo do

robô. A variável step informa o número de passos a

ser girado pelo motor; e dir se refere ao sentido de

rotação do motor (dir=FALSE: sentido anti-horário;

dir=TRUE: sentido horário).

MOTORRIGHT

Sintaxe: motorRight (step, dir)

Parâmetros: step é uma variável inteira de 16 bits não-negativa.

dir é uma variável booleana.

Retorno: Indefinido.

Descrição: Esta rotina aciona o motor do lado direito do robô. A

variável step informa o número de passos a ser

girado pelo motor; e dir se refere ao sentido de

rotação do motor (dir=FALSE: sentido horário;

dir=TRUE: sentido anti-horário).

 A partir destas três rotinas básicas, outras rotinas podem ser obtidas:

MOVEFWD

Sintaxe: moveFwd (dist)

Parâmetros: dist é uma variável inteira de 16 bits não-negativa.

Retorno: Indefinido.

32

Descrição: Rotina para movimentar o robô para frente em dist

milímetros.

MOVEBWD

Sintaxe: moveBwd (dist)

Parâmetros: dist é uma variável inteira de 16 bits não-negativa

Retorno: Indefinido.

Descrição: Rotina para movimentar o robô para trás em dist

milímetros.

TURNCCW

Sintaxe: turnCcw (degree)

Parâmetros: degree é uma variável inteira de 16 bits não-

negativa.

Retorno: Indefinido.

Descrição: Rotina para girar o robô em torno do próprio eixo no

sentido anti-horário de degree graus.

TURNCW

Sintaxe: turnCw (degree)

Parâmetros: degree é uma variável inteira de 16 bits não-

negativa.

33

Retorno: Indefinido.

Descrição: Rotina para girar o robô em torno do próprio eixo no

sentido horário de degree graus.

STOP

Sintaxe: stop ()

Parâmetros: Nenhum.

Retorno: Indefinido.

Descrição: Faz com que o robô pare imediatamente.

 Tem-se ainda uma função para verificar se o robô está se movendo ou

não. Isto é particularmente útil para gerenciar o uso de vários comandos de

movimentação em seqüência.

ISITMOVING

Sintaxe: status = isItMoving ()

Parâmetros: Nenhum.

Retorno: status é uma variável booleana.

Descrição: Verifica se o robô esta em movimento

(status=FALSE: o robô está parado; status=TRUE:

o robô está em movimento).

34

 Há ainda uma rotina referente aos parâmetros de aceleração do motor

de passo, discutidos anteriormente.

SETUPACCELERATION

Sintaxe: setupAcceleration ()

Parâmetros: Nenhum.

Retorno: Indefinido.

Descrição: Escreve na memória do microcontrolador os valores

dos parâmetros de aceleração do motor de passo.

Esta rotina deve ser executada antes do uso das

demais rotinas de movimentação.

4.2.2 Sensoriamento do Ambiente

 Esta biblioteca diz respeito ao uso dos sensores Sharp GP2D120. Este

sensor gera uma saída analógica inversamente proporcional à distância entre o

sensor e um anteparo (veja a Figura 3.8 no Capítulo 3). Esta saída analógica é

lida pelo módulo conversor analógico-digital do microcontrolador PIC16F873,

transformando-a em um número inteiro. A seguir são mostradas as funções e

rotinas presentes nesta biblioteca.

SETUPSENSOR

Sintaxe: setupSensor ()

Parâmetros: Nenhum.

35

Retorno: Indefinido.

Descrição: Inicializa o módulo de sensoriamento.

GETSENSOR

Sintaxe: value = getSensor (sens_id)

Parâmetros: sens_id é uma variável inteira de 8 bits não-

negativa. Valores válidos de sens_id devem

pertencer ao intervalo [0, 4].

Retorno: value é uma variável inteira não-negativa.

Descrição: value recebe o valor gerado pelo sensor de

distância identificado por sens_id, sendo que

sens_id corresponde a um dos cinco canais do

módulo conversor analógico-digital do

microcontrolador.

GETSENSORMEAN

Sintaxe: value = getSensorMean (sens_id)

Parâmetros: sens_id é uma variável inteira de 8 bits não-

negativa. Valores válidos de sens_id devem

pertencer ao intervalo [0, 4].

Retorno: value é uma variável inteira não-negativa.

Descrição: value recebe média aritmética de oito leituras

consecutivas do sensor de distância identificado por

sens_id, sendo que sens_id corresponde a um dos

36

cinco canais do módulo conversor analógico-digital

do microcontrolador.

4.2.3 Interface com o Usuário

 As principais rotinas e funções da biblioteca de interface com o usuário

são apresentadas a seguir.

LCDINITIALIZATION

Sintaxe: lcdInitialization ()

Parâmetros: Nenhum.

Retorno: Indefinido.

Descrição: Executa os procedimentos de inicialização do

display de cristal líquido.

LCDPUTC

Sintaxe: lcdPutc (c)

Parâmetros: c é uma variável do tipo caractere ASCII.

Retorno: Indefinido.

Descrição: Envia um caractere ao display de cristal líquido.

Existem três caracteres especiais:

 ‘\f’: limpa o display, e o cursor vai para o começo da

primeira linha;

37

 ‘\n’: move o cursor para o começo da segunda linha;

 ‘\b’: corresponde ao comando de backspace.

 Observação: Para o envio de um string de

caracteres ao display, pode-se fazer uso da rotina

printf do compilador, com a seguinte sintaxe:

 printf (lcdPutc, "string").

LCDGETC

Sintaxe: c = lcdGetc (x, y)

Parâmetros: x e y são variáveis inteiras de 8 bits não negativas.

Retorno: c é uma variável do tipo caractere ASCII.

Descrição: c recebe o caractere atual da posição (x, y) do

display.

WAITFORBTN

Sintaxe: button = waitForBtn ()

Parâmetros: Nenhum.

Retorno: button é uma variável inteira de 8 bits.

Descrição: Aguarda até que algum botão do robô seja

pressionado, armazenando o valor correspondente

na variável button.

38

4.3 SOFTWARE DE APLICAÇÃO

 O software de aplicação desenvolvido neste projeto tem o intuito de

ilustrar o uso de todas as funcionalidades presentes neste protótipo. Para isto,

desenvolveu-se um aplicativo onde o usuário tem a opção de executar testes

para verificar o funcionamento dos motores e sensores do robô, bem como a

opção de executar um algoritmo de exploração, no qual o robô vaga

aleatoriamente pelo ambiente, desviando de obstáculos encontrados ao longo

de sua trajetória.

4.3.1 Menu de Opções

 A interface com o usuário é feita através de um menu de opções, o qual

é exibido no display de cristal líquido e acessado pelos seguintes botões

apresentados na Tabela 4.2:

Tabela 4.2 – Botões para Navegar no Menu de Opções

Botão Descrição Símbolo

NEXT
Navega para a direita ciclicamente entre as

opções de um mesmo grupo do menu.


PREV
Navega para a esquerda ciclicamente entre as

opções de um mesmo grupo do menu.


OK
Confirma a opção exibida no menu;

Vai para o subgrupo de opções inferior ao atual. 

CANCEL
Cancela a opção exibida no menu;

Vai para o subgrupo de opções superior ao atual. 

39

 Ao se navegar pelo menu do robô, o display de cristal líquido exibe as

opções mostradas na Figura 4.1:

4.3.2 Algoritmo de Exploração do Ambiente

 A opção Explore do menu de opções executa a tarefa propriamente dita

para a qual o robô foi programando. Esta tarefa consiste em explorar o

ambiente, desviando de obstáculos. Para cumprir tal propósito, um algoritmo

simples foi desenvolvido (Figura 4.2).

Figura 4.1 – Estrutura do Menu de Opções Exibido no Display

 Este algoritmo consiste dos seguintes passos. Primeiramente é feita a

leitura dos quatro sensores, os quais estão posicionados na frente, na traseira,

e nas laterais do robô (posições J1, J2, J3 e J4, vide Figura 3.10). A seguir um

número aleatório é gerado através de uma manipulação do valor do timer

interno do microcontrolador. Este valor obtido é usado para que o algoritmo

decida por alguma das quatro opções: o robô

Tests

Explore

Motors

Front
Sensor

Back
Sensor

Left
Sensor

Right
Sensor

Sensors

Move BWD
100mm

Move FWD
200mm

Turn CCW
360deg

Turn CW
180deg

40

Figura 4.2 – Fluxograma do Algoritmo para Exploração do Ambiente

S

N

S

N S

N

S

N
N

S S

N

S S

N N

S S

N

S

S

N

Início

Fim
Botão CANCEL

foi pressionado?

A

Desligue
Motores

Leia
Sensores

i = 0 i++

i <= 20?

B

Pare
(robô cercado)

A

Gere um número
aleatório rand no
intervalo [0, 255]

rand <= 63?

rand <= 127?

rand <= 191?

Frente

Livre?

Traseira

Livre?

Direita

Livre?

Esquerda

Livre?

Pare

Pare
Gire
180º

Pare
Gire 90º

à direita

Pare
Gire 90º

à esquerda

B

B

B

Botão CANCEL

foi pressionado?

Frente

Livre?

Mova 5 m
para frente

Deslocou

5 m?

A A A

N

B N

41

segue em frente, o robô segue na mesma direção em sentido oposto, o robô

segue na direção perpendicular à direita, ou o robô segue na direção

perpendicular à esquerda. Porém, antes que a movimentação na direção e

sentido escolhidos comece, o algoritmo verifica se a opção escolhida está livre

de obstáculos (isto é feito através da checagem do valor lido anteriormente

pelo sensor correspondente). Se o caminho escolhido estiver bloqueado, volta-

se para o passo em que um número aleatório é gerado, e, então, sorteia-se

novamente uma das quatro opções de movimentação. Caso tenham sido feitas

20 tentativas de se encontrar um caminho livre, e em todas elas detectou-se a

presença de obstáculos, o robô pára e considera que está cercado em todas as

direções, voltando ao início do algoritmo. Caso o botão CANCEL tenha sido

pressionado em algum momento, o algoritmo é finalizado. Por outro lado,

voltando ao passo anterior, se o caminho aleatório escolhido estiver livre de

obstáculos, o robô segue por este caminho. A partir deste ponto, monitora-se

três situações para concluir se a execução deve voltar para o início do

algoritmo. Estas situações são: o robô encontra um obstáculo pela frente, o

robô desloca-se por 5 metros pelo caminho escolhido, o botão CANCEL é

pressionado em algum momento. Na ocorrência de qualquer uma destas três

situações, volta-se para o início do algoritmo. No caso da última situação

(botão CANCEL pressionado), a execução do algoritmo é finalizada.

42

5 RESULTADOS

 Ao longo do desenvolvimento deste trabalho, conduziu-se alguns testes

e experimentos com a finalidade de definir e verificar os requisitos do projeto.

Os resultados mais significativos destes testes e experimentos são

apresentados e discutidos a seguir.

 Primeiramente testou-se o circuito do módulo de acionamento. Nos

testes, observou-se que, sem carga aplicada, o motor responde bem até uma

freqüência de acionamento de cerca de 1kHz. Este valor corresponde a uma

rotação de 300rpm, e uma velocidade linear do robô de cerca de 80cm/s, o que

é um valor alto para os propósitos deste robô. A velocidade máxima

especificada neste projeto é de até 18cm/s (223Hz). Nesta freqüência de

acionamento, verificou-se que o motor fornece torque suficiente para a

movimentação plena do robô.

 Testes realizados no circuito do módulo de alimentação também

mostram resultados satisfatórios. O componente LM2575 (regulador chaveado)

regula corretamente a tensão em 5,0V para valores de entrada maiores que

7,0V e menores que 40V. A tensão nominal fornecida pelas baterias é de

14,4V, e, portanto, as variações observadas neste valor nominal de tensão, na

faixa de 13V a 18V, estão dentro das especificações. Foi também observado

que este conjunto de baterias provê uma autonomia de funcionamento

ininterrupto ao robô de cerca de trinta minutos, o que é suficiente para os

propósitos deste protótipo.

 Acreditava-se que sensor de distância apresentaria restrições quanto ao

tipo de superfície do anteparo (obstáculo). No entanto, testes realizados com

um sensor SHARP GP2D120 mostraram que este tipo de sensor é pouco

sensível ao tipo de superfície. Nas especificações do sensor consta que

anteparo deve ser um objeto de superfície opaca. A fim de se verificar a

influência do tipo superfície do objeto na resposta do sensor, realizou-se

ensaios cuidadosos para três tipos superfícies: opaca escura (papel pardo),

opaca branca (papel sulfite) e brilhante (papel alumínio). Os resultados são

mostrados na Figura 5.1. A faixa de valores ensaiada comum para os três tipos

43

de superfície foi de 10cm a 60cm. Nesta faixa praticamente não se observa

diferença na resposta entre as superfícies branca e escura; e se vê uma

pequena discrepância entre estas duas superfícies e a superfície brilhante. Isto

mostra que, adotando uma certa tolerância para a medição, o sensor se mostra

pouco sensível à influência do tipo de superfície. Desta forma, confirmou-se

que os dados adquiridos pelo sistema de sensoriamento são confiáveis o

suficiente para serem usados pelo robô em tomadas de decisão.

Figura 5.1: Influência do Tipo de Superfície na
Resposta do Sensor SHARP GP2D120

0

100

200

300

400

500

600

700

0 20 40 60 80 100

Distância (cm)

C
o

n
v
e

rs
o

r
A

D

Escura

Branca

Brilhante

 A Tabela 5.1 resume os parâmetros de projeto analisados nos testes e

experimentos apresentados acima.

 Finalmente, para validar tanto o protótipo construído e como o software

desenvolvido, foram realizados testes com o robô em duas situações

particulares. Na primeira situação, o robô foi colocado para explorar uma

pequena área delimitada (Figura 5.1). Na segunda situação, permitiu-se ao

robô explorar livremente um amplo corredor (Figura 5.2).

44

Tabela 5.1 – Parâmetros de Projeto Analisados

Figura 5.1 – Exploração de uma Pequena Área Delimitada

Parâmetros Valores Comentários

Freqüência
Máxima de

Acionamento
223 Hz

A esta freqüência, há
torque suficiente para a
movimentação do robô

Velocidade
Máxima do

Robô
18 cm/s

Velocidade adequada para
os propósitos do projeto

Tensão
Nominal das

Baterias
14,4 V

Variação no Valor Nominal
na Faixa de 13 V a 18 V

Autonomia do
Robô

Aproximadamente
30 minutos

Considerando
Funcionamento Pleno e

Ininterrupto

Resposta do
Sensor de
Distância

4 cm a 30 cm
Pouco Sensível ao Tipo de

Superfície do Anteparo

45

Figura 5.2 – Exploração Livremente de um Amplo Corredor

 Em ambas as situações de exploração, foi possível constatar que o robô

cumpriu satisfatoriamente a tarefa para o qual foi programado, ou seja, vagou

aleatoriamente pelo ambiente sem colidir com nenhum obstáculo.

46

6 CONCLUSÕES

 Neste projeto de formatura pôde-se chegar a um protótipo de robô móvel

autônomo plenamente funcional, bem como desenvolver um aplicativo de

software para que o robô cumprisse uma determinada tarefa satisfatoriamente.

 O desenvolvimento deste microrrobô passou por todas as etapas de

projeto de hardware e software. Primeiramente fez-se o projeto do hardware de

controle, passando em seguida para concepção do layout da placa de circuito

impresso. Com o hardware de controle finalizado, partiu-se para o

desenvolvimento do software de controle. Ao término desta etapa, obteve-se

uma plataforma de desenvolvimento, através da qual pôde-se finalmente

desenvolver um aplicativo para exploração de ambiente.

 Deve-se notar que esta plataforma de desenvolvimento, composta pelo

hardware e software de controle, possibilita o desenvolvimento de aplicativos

com um grau bem maior de complexidade do que o apresentado. Desta forma,

há um grande potencial para que trabalhos futuros venham ser desenvolvidos

tendo como base este robô. Uma sugestão promissora, com fins acadêmicos, é

o uso deste protótipo para resolver labirintos, já que este projeto fornece um

robô com uma estrutura adequada para este propósito. Também é sugerido o

uso deste trabalho como base para a construção de novas versões do robô

Jerry.

47

REFERÊNCIAS

ALLEGRO MICROSYSTEMS, INC. SLA7024M, SLA7026M, and SMA7029M.
Disponível em: <http://www.allegromicro.com/en/Products/Part_Numbers/
97024/97024.pdf>. Acessado em: 24 nov 2007.

CCS, INC. C Compile Reference Manual. Disponível em:
<http://www.ccsinfo.com/ downloads/ccs_c_manual.pdf>. Acessado em: 15 abr.
2007.

COSTA, A. H. R. Robótica Móvel Inteligente: Progressos e Desafios. 2003.
1v. Tese (Livre Docência) - Escola Politécnica, Universidade de São Paulo, São
Paulo, 2003.

CRYSTALFONTZ AMERICA, INC. CFAH0802A-GYH-JP: 8x2 STN, Positive
Transflective Yellow-Green LCD with Green LED Backlight. Disponível em:
<http://www.datasheetarchive.com/CFAH0802A-YYE-JP-datasheet.html>.
Acessado em: 24 nov 2007.

KENJO, T. Stepping Motors and their Microprocessor Controls. 1ª edição.
Oxford University Press, 1984.

MICROCHIP TECHNOLOGY INC. PIC16F87XA Data Sheet: 28/40/44-Pin
Enhanced Flash Microcontrollers. Disponível em: <http://ww1.microchip.com/
downloads/en/DeviceDoc/39582b.pdf>. Acessado em: 15 abr. 2007.

NATIONAL SEMICONDUCTOR CORPORATION. LM1575/LM2575/
LM2575HV. Disponível em: <http://cache.national.com/ds/LM/LM1575.pdf>.
Acessado em: 24 nov 2007.

STMICROELETRONICS COMPANY. L297: Stepper Motor Controllers.
Disponível em: <http://www.st.com/stonline/products/literature/ds/1334/l297.
pdf>. Acessado em: 24 nov 2007.

http://www.allegromicro.com/en/products/part_numbers/97024/

48

APÊNDICE A - Esquema do Circuito Elétrico

49

APÊNDICE B - Layout da Placa de Circuito Impresso

 A seguir seguem desenhos referentes ao layout da placa de circuito

impresso do hardware de controle. As regiões em vermelho representam furos

passantes na placa. As linhas em magenta representam as trilhas de circuito

na face superior da placa, enquanto que as linhas em ciano mostram as trilhas

na face inferior. A placa possui dimensões de 4,450 pol x 3,550 pol (113,0 mm

x 90,2 mm).

50

51

APÊNDICE C - Código Fonte do Programa

/**

Explorer.c

Este programa, em linguagem C e compilado

atraves do PCM C Compiler do fabricante

CCS, Inc., eh um aplicativo para Robo

Jerry versao 1.0, ilustrando o uso de

todas as funcionalidades presentes neste

prototipo. A interface com o usuario eh

feita atraves de um menu de opcoes,

exibido no display de cristal liquido e

acessado pelos botoes: NEXT(=proxima

opcao), PREV(=opcao anterior), OK

(=confirma opcao), e CANCEL (=cancela

opcao). Neste aplicativo tem-se a opcao

de executar testes para verificar o

funcionamento dos motores e sensores do

robo, bem como a opcao de executar uma

rotina de exploracao do ambiente, onde o

robo vaga indefinidamente pelo ambiente

desviando de obstaculos.

***/

//inclui a biblioteca do PIC16F873

#include <16F873.h>

//Configuration words para o PIC16F873

#fuses HS,NOPROTECT,NOWDT,NOPUT,NOBROWNOUT

//Habilita o uso da funcao delay

#use delay (clock=20000000)

#define STEP_LEFT PIN_C0 //pulsos de clock p/ o motor de passo

//esquerdo

#define DIR_LEFT PIN_C1 //direcao de rotacao p/ o motor de passo

//esquerdo; 0->CCW

#define STEP_RIGHT PIN_C2 //pulsos de clock p/ o motor de passo

//esquerdo

#define DIR_RIGHT PIN_C3 //direcao de rotacao p/ o motor de passo

//direito; 0->CCW

#define MT_ENABLE PIN_C4 //sinal de habilitacao do funcionamento

//dos motores; 1->habilita

#define LED1 PIN_C5 //pinos correspodentes aos 4 leds de

//sinalizacao

#define LED2 PIN_C6

#define LED3 PIN_C7

#define LED4 PIN_A4

#define SW2 PIN_C5 //pinos correspondentes aos 4

//pushbuttons

#define SW3 PIN_C6

#define SW4 PIN_C7

#define SW5 PIN_A4

#define OPCYCLE_FREQ 65036 //define a frequencia de interrupcao;

//65036->200us->5kHz

#define NEXT 0x07 //mascara p/ leitura do botao SW2

#define PREV 0x0B //mascara p/ leitura do botao SW3

#define OK 0x0D //mascara p/ leitura do botao SW4

#define CANCEL 0x0E //mascara p/ leitura do botao SW5

#define OFF 0 //usados como parametros para

//habilitar/desabilitar os motores

#define ON 1

52

#define FWD 0 //usados como parametros para definir o

//sentido do movimento do robo (frente/tras)

#define BWD 1

#define SPEED_MAX 13 //nivel de velocidade maximo para os

//motores

#define LCD_TYPE 2 //configuracao do display: 0=caracter

//5x7 pontos, 1=5x10, 2=2 linhas

#define LCD_LINE_TWO 0x40 //endereco no LCD RAM para a segunda

//linha do display

#define SENS_FRONT 0 //canal AD para o sensor frontal

#define SENS_BACK 2 //canal AD para o sensor traseiro

#define SENS_RIGHT 1 //canal AD para o sensor lateral direito

#define SENS_LEFT 3 //canal AD para o sensor lateral

//esquerdo

#define LIMIT_DIST 0x2A //valor referente a distancia limite que

//o robo considera como obstaculo

//Variaveis globais

int led;//corresponde ao output dos leds:

//led=0b'XXXX<LED1><LED2><LED3><LED4>', active high

int btn;//corresponde ao input dos botoes:

//btn=0b'XXXX<SW2><SW3><SW4><SW5>', active low

//Variaveis usadas no algoritmo de leitura dos pushbuttons

int btn_prev;

int btn_current;

//Variaveis usadas no acionamento dos motores de passo

unsigned int mtl_speed; unsigned int mtr_speed;

unsigned long mtl_step_current;

unsigned long mtr_step_current;

unsigned long mtl_step_target;

unsigned long mtr_step_target;

unsigned int mtl_counter;

unsigned int mtr_counter;

//---//

//------------INTERFACE COM USUARIO------------//

//---//

//Esta estrutura eh referenciada a pinos de I/O do microcontrolador

//para ter acesso aos pinos do LCD. Os bits estao em ordem crescente.

//Por exemplo, ENABLE eh o pino B3

struct lcd_pin_map {

 boolean unused;

 boolean rs;

 boolean rw;

 boolean en;

 int data: 4;

} lcd;

#byte lcd=6//coloca a estrutura inteira no PORTB (no endereco 6)

//Este byte deve ser enviado ao LCD para fazer sua inicializacao

byte CONST LCD_INIT_STRING[4] = {0x20 | (LCD_TYPE << 2), 0x08, 0x01,

0x06};

//Usados para configurar a direcao do I/O port

STRUCT lcd_pin_map const LCD_WRITE = {0,0,0,0,0};//para o modo de

//escrita, todos os pinos sao saidas

STRUCT lcd_pin_map const LCD_READ = {0,0,0,0,15};//para o modo de

//leitura, os pinos de dados sao entradas

//Leitura do byte enviando pelo LCD

byte lcdReadByte();

//Envio de um nibble para o LCD

void lcdSendNibble(byte n);

53

//Envio de um byte para o LCD

void lcdSendByte(byte address,byte n);

//Procedimento de inicializacao do LCD

void lcdInitialization();

//Vai para a posicao (x,y) no display; Ex: (2,1)->inicio da segunda

//linha

void lcdGoToXY(byte x,byte y);

//Envia um caractere ao LCD

//\f->Limpa display, cursor no comeco da primeira linha

//\n->Move para o comeco da segunda linha

//\b->Backspace

void lcdPutc(char c);

//Obtem o caractere da posicao (x,y) no display

char lcdGetc(byte x,byte y);

//Funcao que detecta que algum botao foi pressionado

int waitForBtn();

//------------------------------------//

//------------MOVIMENTACAO------------//

//------------------------------------//

//Rotina para habilitar ou desabilitar o acionamento do motor

void motorEnable(short enable);

//Rotina para acionar a roda esquerda do robo

void motorLeft(unsigned long step, short dir);

//Rotina para acionar a roda direta do robo

void motorRight(unsigned long step, short dir);

//Rotina para movimentar o robo para frente em 'dist' mm

void moveFwd(unsigned long dist);

//Rotina para movimentar o robo para tras em 'dist' mm

void moveBwd(unsigned long dist);

//Rotina para girar o robo em torno do proprio eixo no sentido

//anti-horario de 'degree' graus

void turnCcw(unsigned long degree);

//Rotina para gira o robo em torno do proprio eixo no sentido horario

//de 'degree' graus

void turnCw(unsigned long degree);

//Faz com que o robo pare imediatamente

void stop();

//Verifica se o robo esta em movimento

short isItMoving();

//Gera o proximo valor de mtx_speed

unsigned int nextSpeed(unsigned long remaining, unsigned int speed);

//Escreve na eeprom os valores dos parametros de aceleracao do motor

//de passo

void setupAcceleration();

//-------------------------------------//

//------------SENSORIAMENTO------------//

//-------------------------------------//

//Inicializacao do modulo de sensoriamento

void setupSensor();

//Le o valor gerado pelo sensor de distancia 'sens_id'

unsigned int getSensor(unsigned int sens_id);

//Obtem a media de 8 leituras do sensor de distancia 'sens_id'

unsigned int getSensorMean(unsigned int sens_id);

//-----------------------------------//

//------------APLICATIVO------------//

//-----------------------------------//

//o robo explora o ambiente desviando de obstaculos

void explore();

54

//--//

//------------PROGRAMA PRINCIPAL------------//

//--//

Main(){

 int buttons;

 unsigned int sensor;

 //Inicializa o timer1: recebe clock

 //interno (20MHz) e é divido por 2.Ou seja,

 //incrementa a cada 0,4us[=inv((fosc/4)/2)]

 setup_timer_1(T1_INTERNAL | T1_DIV_BY_2);

 //Inicializacao do modulo de sensoriamento

 setupSensor();

 //Escreve na eeprom os valores dos parametros da aceleracao do motor

 //de passo

 setupAcceleration();

 enable_interrupts(global);//habilita as interrupcoes

 enable_interrupts(int_timer1);//habilita a interrupção int_timer1

 mtl_speed=0;

 mtr_speed=0;

 mtl_step_current=0;

 mtr_step_current=0;

 mtl_step_target=0;

 mtr_step_target=0;

 mtl_counter=0;

 mtr_counter=0;

 motorEnable(OFF);//motores desabilitaods

 led=0x0F;

 btn=0x0F;

 btn_prev=0x0F;

 btn_current=0x0F;

 //Verificacao do funcionamento dos LEDs de sinalizacao

 led=0x0F;

 delay_ms(500);

 led=0;

 delay_ms(500);

 led=0x0F;

 delay_ms(500);

 led=0x0A;

 delay_ms(500);

 led=0x05;

 delay_ms(500);

 led=0;

 lcdInitialization();//inicializacao do display

 printf(lcdPutc, "\fJerry\nv1.0");

 delay_ms(500);

 //Menu de opcoes para controlar as funcionalidades do robo

 //As opcoes sao exibidas no LCD, e o usuario as acessa atraves do

 //botoes

 //botao NEXT: proxima opcao do menu

 //botao PREV: opcao anterior do menu

 //botao OK: ativa a opcao exibida no menu, ou entra no subdiretorio

 //correspondente

 //botao CANCEL: cancela o aplicativo em execucao, ou retorna ao

 //diretorio um nivel acima do diretorio atual

MENU1:

 printf(lcdPutc, "\fExplore ");

 buttons=waitForBtn();

55

 switch(buttons){

 case NEXT:

 goto MENU2;

 break;

 case PREV:

 goto MENU2;

 break;

 case OK:

 explore();

 break;

 case CANCEL:

 goto MENU1;

 break;

 }//endswitch

 goto MENU1;

MENU2:

 printf(lcdPutc, "\fTests ");

 buttons=waitForBtn();

 switch(buttons){

 case NEXT:

 goto MENU1;

 break;

 case PREV:

 goto MENU1;

 break;

 case OK:

 goto MENU2_1;

 break;

 case CANCEL:

 goto MENU2;

 break;

}//endswitch

goto MENU2;

MENU2_1:

 printf(lcdPutc, "\fMotors ");

 buttons=waitForBtn();

 switch(buttons){

 case NEXT:

 goto MENU2_2;

 break;

 case PREV:

 goto MENU2_2;

 break;

 case OK:

 goto MENU2_1_1;

 break;

 case CANCEL:

 goto MENU2;

 break;

 }//endswitch

 goto MENU2_1;

MENU2_2:

 printf(lcdPutc, "\fSensors ");

 buttons=waitForBtn();

 switch(buttons){

 case NEXT:

 goto MENU2_1;

56

 break;

 case PREV:

 goto MENU2_1;

 break;

 case OK:

 goto MENU2_2_1;

 break;

 case CANCEL:

 goto MENU2;

 break;

 }//endswitch

 goto MENU2_2;

MENU2_1_1:

 printf(lcdPutc, "\fMove FWD\n200mm ");

 buttons=waitForBtn();

 switch(buttons){

 case NEXT:

 goto MENU2_1_2;

 break;

 case PREV:

 goto MENU2_1_4;

 break;

 case OK:

 motorEnable(ON);

 moveFwd(200);

 while(isItMoving());//espera o robo terminar o movimento

 motorEnable(OFF);

 break;

 case CANCEL:

 goto MENU2_1;

 break;

 }//endswitch

 goto MENU2_1_1;

MENU2_1_2:

 printf(lcdPutc, "\fMove BWD\n100mm ");

 buttons=waitForBtn();

 switch(buttons){

 case NEXT:

 goto MENU2_1_3;

 break;

 case PREV:

 goto MENU2_1_1;

 break;

 case OK:

 motorEnable(ON);

 moveBwd(100);

 while(isItMoving());//espera o robo terminar o movimento

 motorEnable(OFF);

 break;

 case CANCEL:

 goto MENU2_1;

 break;

 }//endswitch

 goto MENU2_1_2;

MENU2_1_3:

 printf(lcdPutc, "\fTurn Ccw\n360deg ");

 buttons=waitForBtn();

57

 switch(buttons){

 case NEXT:

 goto MENU2_1_4;

 break;

 case PREV:

 goto MENU2_1_2;

 break;

 case OK:

 motorEnable(ON);

 TurnCcw(360);

 while(isItMoving());//espera o robo terminar o movimento

 motorEnable(OFF);

 break;

 case CANCEL:

 goto MENU2_1;

 break;

 }//endswitch

 goto MENU2_1_3;

MENU2_1_4:

 printf(lcdPutc, "\fTurn Cw\n180deg ");

 buttons=waitForBtn();

 switch(buttons){

 case NEXT:

 goto MENU2_1_1;

 break;

 case PREV:

 goto MENU2_1_3;

 break;

 case OK:

 motorEnable(ON);

 TurnCw(180);

 while(isItMoving());//espera o robo terminar o movimento

 motorEnable(ON);

 break;

 case CANCEL:

 goto MENU2_1;

 break;

 }//endswitch

 goto MENU2_1_4;

MENU2_2_1:

 printf(lcdPutc, "\fFront \nSensor ");

 buttons=waitForBtn();

 switch(buttons){

 case NEXT:

 goto MENU2_2_2;

 break;

 case PREV:

 goto MENU2_2_4;

 break;

 case OK:

 printf(lcdPutc, "\fSF = %02x ", getSensorMean(SENS_FRONT));

 delay_ms(1000);

 break;

 case CANCEL:

 goto MENU2_2;

 break;

 }//endswitch

 goto MENU2_2_1;

58

MENU2_2_2:

 printf(lcdPutc, "\fBack \nSensor ");

 buttons=waitForBtn();

 switch(buttons){

 case NEXT:

 goto MENU2_2_3;

 break;

 case PREV:

 goto MENU2_2_1;

 break;

 case OK:

 printf(lcdPutc, "\fSB = %02x ", getSensorMean(SENS_BACK));

 delay_ms(1000);

 break;

 case CANCEL:

 goto MENU2_2;

 break;

 }//endswitch

 goto MENU2_2_2;

MENU2_2_3:

 printf(lcdPutc, "\fRight \nSensor ");

 buttons=waitForBtn();

 switch(buttons){

 case NEXT:

 goto MENU2_2_4;

 break;

 case PREV:

 goto MENU2_2_2;

 break;

 case OK:

 printf(lcdPutc, "\fSR = %02x ", getSensorMean(SENS_RIGHT));

 delay_ms(1000);

 break;

 case CANCEL:

 goto MENU2_2;

 break;

 }//endswitch

 goto MENU2_2_3;

MENU2_2_4:

 printf(lcdPutc, "\fLeft \nSensor ");

 buttons=waitForBtn();

 switch(buttons){

 case NEXT:

 goto MENU2_2_1;

 break;

 case PREV:

 goto MENU2_2_3;

 break;

 case OK:

 printf(lcdPutc, "\fSL = %02x ", getSensorMean(SENS_LEFT));

 delay_ms(1000);

 break;

 case CANCEL:

 goto MENU2_2;

 break;

 }//endswitch

 goto MENU2_2_4;

59

}//end main

//---//

//------------INTERRUPCAO PRINCIPAL------------//

//---//

//Rotina de interrupcao (interrompe c/ overflow do timer1) para a

execucao

//das tarefas iterativas do microcontrolador: acionamento dos motores,

//acionamento dos leds, e leitura dos botoes.

#int_timer1

OpCycle(){

 unsigned long mtl_remaining;

 unsigned long mtr_remaining;

 //Sempre que a rotina de interrupcao eh chamada

 //o timer1 eh "setado" para OPCYCLE_FREQ, e conta de

 //(OPCYCLE_FREQ) até 65535(16-bit timer), perfazendo

 //(65536 - OPCYCLE_FREQ) x 0,4us; neste instante a

 //interrupcao eh acionada novamente

 set_timer1(OPCYCLE_FREQ);

 //MOTOR DRIVE

 if(mtl_step_target!=0){

 if(mtl_counter<read_eeprom(mtl_speed))//temporizador para gerar a

 //frequencia de acionamento

 mtl_counter++;

 else{

 output_low(STEP_LEFT);//pulso de comando de passo

 delay_us(4);

 output_high(STEP_LEFT);

 mtl_counter=0;

 mtl_step_current++;

 mtl_remaining=mtl_step_target-mtl_step_current;

 mtl_speed=nextSpeed(mtl_remaining, mtl_speed);

 if(mtl_remaining==0){//verifica se o motor atingiu a posicao

 mtl_step_target=0;

 mtl_step_current=0;

 mtl_speed=0;

 }//endif mtl_remaining

 }//endelse

 }//endif mtl_step_target

 if(mtr_step_target!=0){

 if(mtr_counter<read_eeprom(mtr_speed))//temporizador para gerar a

 //frequencia de acionamento

 mtr_counter++;

 else{

 output_low(STEP_RIGHT);//pulso de comando de passo

 delay_us(4);

 output_high(STEP_RIGHT);

 mtr_counter=0;

 mtr_step_current++;

 mtr_remaining=mtr_step_target-mtr_step_current;

 mtr_speed=nextSpeed(mtr_remaining, mtr_speed);

 if(mtr_remaining==0){//verifica se o motor atingiu a posicao

 mtr_step_target=0;

 mtr_step_current=0;

 mtr_speed=0;

 }//endif mtr_remaining

60

 }//endelse

 }//endif mtr_step_target

 //BTNs

 btn_prev=btn_current;

 btn_current=input(SW2);

 btn_current=(btn_current<<1)+input(SW3);

 btn_current=(btn_current<<1)+input(SW4);

 btn_current=(btn_current<<1)+input(SW5);

 if(btn_prev==btn_current)

 btn=btn_current;

 //LEDs

 if((led&0x01)==0x01)

 output_high(LED4);

 else

 output_low(LED4);

 if((led&0x02)==0x02)

 output_high(LED3);

 else

 output_low(LED3);

 if((led&0x04)==0x04)

 output_high(LED2);

 else

 output_low(LED2);

 if((led&0x08)==0x08)

 output_high(LED1);

 else

 output_low(LED1);

 }//end interrupcao

//---//

//------------INTERFACE COM USUARIO------------//

//---//

//Leitura do byte enviando pelo LCD

byte lcdReadByte(){

 byte low,high;

 set_tris_b(LCD_READ);

 lcd.rw = 1;

 delay_cycles(1);

 lcd.en = 1;

 delay_cycles(1);

 high = lcd.data;

 lcd.en = 0;

 delay_cycles(1);

 lcd.en = 1;

 delay_us(1);

 low = lcd.data;

 lcd.en = 0;

 set_tris_b(LCD_WRITE);

 return((high<<4)|low);

}

//Envio de um nibble para o LCD

void lcdSendNibble(byte n){

 lcd.data=n;

 delay_cycles(1);

 lcd.en=1;

61

 delay_us(2);

 lcd.en=0;

}

//Envio de um byte para o LCD

void lcdSendByte(byte address, byte n){

 lcd.rs=0;

 while(bit_test(lcdReadByte(), 7));

 lcd.rs=address;

 delay_cycles(1);

 lcd.rw=0;

 delay_cycles(1);

 lcd.en=0;

 lcdSendNibble(n>>4);

 lcdSendNibble(n&0xf);

}

//Procedimento de inicializacao do LCD

void lcdInitialization(){

 byte i;

 set_tris_b(LCD_WRITE);

 lcd.rs = 0;

 lcd.rw = 0;

 lcd.en = 0;

 delay_ms(15);

 for(i=1;i<=3;i++){

 lcdSendNibble(3);

 delay_ms(5);

 }

 lcdSendNibble(2);

 for(i=0;i<=3;i++)

 lcdSendByte(0,LCD_INIT_STRING[i]);

 lcdSendByte(0,0x0E);

 lcdSendByte(0,0x01);

}

//Vai para a posicao (x,y) no display; Ex: (2,1)->inicio da segunda

//linha

void lcdGoToXY(byte x, byte y){

 byte address;

 if(y!=1)

 address=LCD_LINE_TWO;

 else

 address=0;

 address+=x-1;

 lcdSendByte(0,0x80|address);

}

//Envia um caractere ao LCD

//\f->Limpa display, cursor no comeco da primeira linha

//\n->Move para o comeco da segunda linha

//\b->Backspace

void lcdPutc(char c){

 switch(c){

 case '\f':

 lcdSendByte(0,1);

 delay_ms(2);

 break;

 case '\n' :

62

 lcdGoToXY(1,2);

 break;

 case '\b':

 lcdSendByte(0,0x10);

 lcdSendByte(1,0x20);

 break;

 default:

 lcdSendByte(1,c);

 break;

 }//endswitch

}//end lcdPutc

//Obtem o caractere da posicao (x,y) no display

char lcdGetc(byte x, byte y){

 char value;

 lcdGoToXY(x,y);

 lcd.rs=1;

 value=lcdReadByte();

 lcd.rs=0;

 return(value);

}

//Funcao que detecta que algum botao foi pressionado

int waitForBtn(){

 int temp;

 do{

 temp=btn;

 }while((temp&0x0F)==0x0F);

 while((btn&0x0F)!=0x0F);

 return((temp&0x0F));

}//end waitForBtn

//------------------------------------//

//------------MOVIMENTACAO------------//

//------------------------------------//

//Rotina para habilitar ou desabilitar o acionamento do motor

void motorEnable(short enable){

 if(enable==ON)

 output_high(MT_ENABLE);

 else

 output_low(MT_ENABLE);

}

//Rotina para acionar a roda esquerda

void motorLeft(unsigned long step, short dir){

 //espera o motor completar o numero de passos do comando anterior

 while(mtl_step_target!=0);

 //sentido de movimento para a roda esquerda do robo

 if(dir==FWD)

 output_low(DIR_LEFT);//motor esquerdo gira no sentido CCW

 else//if(dir==BWD)

 output_high(DIR_LEFT);//motor esquerdo gira no sentido CW

 mtl_step_target=step;//numero de passos a ser dado pelo motor

 }

63

//Rotina para acionar a roda direita

void motorRight(unsigned long step, short dir){

 //espera o motor completar o numero de passos do comando anterior

 while(mtr_step_target!=0);

 //sentido de movimento para a roda direita do robo

 if(dir==FWD)

 output_high(DIR_RIGHT);//motor direito gira no sentido CW

 else//if(dir==BWD)

 output_low(DIR_RIGHT);//motor direito gira no sentido CCW

 mtr_step_target=step;//numero de passos a ser dado pelo motor

}

//Rotina para movimentar o robo para frente em 'dist' mm

void moveFwd(unsigned long dist){

 unsigned long step;

 //1 volta = 200 passos = 161,16mm; 200/(161,16)=~1,24=31/25

 step=(dist*31)/25;//'dist' nao deve ser maior que 52851 para ocorrer

 //overflow em 'step'

 motorLeft(step, FWD);

 motorRight(step, FWD);

}

//Rotina para movimentar o robo para tras em 'dist' mm

void moveBwd(unsigned long dist){

 unsigned long step;

 //1 volta = 200 passos = 161,16mm; 200/(161,16)=~1,24=31/25

 step=(dist*31)/25;//'dist' nao deve ser maior que 52851 para ocorrer

 //overflow em 'step'

 motorLeft(step, BWD);

 motorRight(step, BWD);

}

//Rotina para girar o robo em torno do proprio eixo no sentido

//anti-horario de 'degree' graus

void turnCcw(unsigned long degree){

 unsigned long step;

 //Para girar de 360 graus em torno do proprio eixo, cada roda deve

 //percorrer um circulo de

 //diametro 'd', onde 'd' eh distancia entre as rodas (d=82,3mm),

 //portanto

 //step = degree*[(pi*d)*(31/25)]/360=~(320/360)*degree=(8/9)*degree

 step=(8*degree)/9;

 motorLeft(step, BWD);

 motorRight(step, FWD);

}

//Rotina para gira o robo em torno do proprio eixo no sentido horario

//de 'degree' graus

void turnCw(unsigned long degree){

 unsigned long step;

 //Para girar de 360 graus em torno do proprio eixo, cada roda deve

 //percorrer um circulo de

 //diametro 'd', onde 'd' eh distancia entre as rodas (d=82,3mm),

 //portanto

 //step = degree*[(pi*d)*(31/25)]/360=~(320/360)*degree=(8/9)*degree

 step=(8*degree)/9;

64

 motorLeft(step, FWD);

 motorRight(step, BWD);

}

//Faz com que o robo pare imediatamente

void stop(){

 mtl_speed=0;

 mtr_speed=0;

 mtl_step_current=0;

 mtr_step_current=0;

 mtl_step_target=0;

 mtr_step_target=0;

 mtl_counter=0;

 mtr_counter=0;

}

//Verifica se o robo esta em movimento

short isItMoving(){

 if((mtl_step_target!=0)||(mtr_step_target!=0))

 return(TRUE);//robo em movimento

 else

 return(FALSE);//robo parado

}

//Gera o proximo valor de mtx_speed

unsigned int nextSpeed(unsigned long remaining, unsigned int speed){

 //Controla a velocidade para (des)acelerar o motor

 if(remaining>(long)speed)

 speed++;

 else

 speed--;

 //Limites de velocidade

 if(speed>SPEED_MAX)

 speed=SPEED_MAX;

 if(speed<0)

 speed=0;

 return(speed);

}

//escreve os valores das constantes para aceleracao do motor

void setupAcceleration(){

 write_eeprom(0,0xFF);//cte p/ vel=0

 write_eeprom(1,0x9E);//cte p/ vel=1, etc.

 write_eeprom(2,0x41);

 write_eeprom(3,0x32);

 write_eeprom(4,0x2A);

 write_eeprom(5,0x25);

 write_eeprom(6,0x22);

 write_eeprom(7,0x1F);

 write_eeprom(8,0x1D);

 write_eeprom(9,0x1B);

 write_eeprom(10,0x1A);

 write_eeprom(11,0x18);

 write_eeprom(12,0x17);

 write_eeprom(13,0x16);

}

//-------------------------------------//

//------------SENSORIAMENTO------------//

65

//-------------------------------------//

//Inicializacao do modulo de sensoriamento

void setupSensor(){

 setup_port_a(A_ANALOG);//pinos AN0, AN1, AN2, AN3, AN4 analogicos;

 //Vref+ = Vdd, Vref- = Vss

 setup_adc(ADC_CLOCK_DIV_32);//Tad = 32*Tosc = 1,6us (Tad = tempo de

 //conversao de cada bit)

}

//Le o valor gerado pelo sensor de distancia 'sens_id'

unsigned int getSensor(unsigned int sens_id){

 unsigned int value;

 if(sens_id<=4){

 set_adc_channel(sens_id);// sens_id: canal de entrada

 //analogica->AN0,...,AN4

 delay_us(50);//tempo de conversao AD

 value=read_ADC()>>2;//read_ADC retorna um valor de 10 bit;

 //value->8 bits

 return(value);

 }

 else//sens_id invalido

 return(0xff);

}

//Obtem a media de 8 leituras do sensor de distancia 'sens_id'

unsigned int getSensorMean(unsigned int sens_id){

 int i;

 long sensor;

 sensor=0;

 for(i=1; i<=8; i++)//somatorio de 8 leituras do sensor

 sensor=sensor+(long)getSensor(sens_id);

 sensor=sensor>>3;//equivale a dividir o somatorio por 8

 return((unsigned int)sensor);

}

//-----------------------------------//

//------------APLICATIVOS------------//

//-----------------------------------//

//O robo explora o ambiente desviando de obstaculos

void explore(){

 short exp_canceled;

 unsigned int i, rand;

 //sensores frontal, traseiro, lateral direito, e lateral esquerdo,

 respectivamente

 long sensF, sensB, sensR, sensL;

 printf(lcdPutc,"\fExplor- \n-ing... ");

 delay_ms(1000);

 printf(lcdPutc,"\fPress \nCancel ");

 delay_ms(1000);

 printf(lcdPutc,"\fto abort\nmission ");

 delay_ms(1000);

 motorEnable(ON);

 exp_canceled=FALSE;

EXP_AGAIN:

 if(exp_canceled==FALSE){

66

 sensF=getSensorMean(SENS_FRONT);

 sensB=getSensorMean(SENS_BACK);

 sensR=getSensorMean(SENS_RIGHT);

 sensL=getSensorMean(SENS_LEFT);

 //Imprime no display os valores lidos dos sensores

 printf(lcdPutc, "\f %02x %02x\n %02x %02x ", sensF, sensB,

 sensR, sensL);

 //Faz 20 tentativas para verificar se ha caminho livre

 for(i=1; i<=20; i++){

 //Gera um numero "aleatorio"

 rand=(unsigned int)(get_timer1()&0x00FF);

 //Move para frente

 if(rand<=63){

 if(sensF<=LIMIT_DIST)//o sensor gera um valor inversamente

 //proporcional a distancia

 goto EXP_FWD;

 }//endif FWD

 //Move para tras

 else if(rand<=127){

 if(sensB<=LIMIT_DIST)

 goto EXP_BWD;

 }//endif BWD

 //Move para a direita

 else if(rand<=191){

 if(sensR<=LIMIT_DIST)

 goto EXP_RIGHT;

 }//endif RIGHT

 //Move para a esquerda

 else{

 if(sensL<=LIMIT_DIST)

 goto EXP_LEFT;

 }//endelse LEFT

 }//endfor

 //O robo detectou que esta cercado de obstaculos, e para!

 stop();

 delay_ms(500);

 printf(lcdPutc, "\f*JERRY**\n*LOCKED*");

 delay_ms(1000);

 exp_canceled=!((short)(btn&0x01));//verifica se o botao CANCEL foi

 //pressionado

 goto EXP_AGAIN;

EXP_FWD:

 stop();

 moveFwd(5000);//move 5000mm=5m

 goto EXP_OBSTACLE;

EXP_BWD:

 stop();

 turnCcw(180);//gira 180 graus

 moveFwd(5000);//move 5000mm=5m

 goto EXP_OBSTACLE;

EXP_LEFT:

 stop();

 turnCcw(90);//gira (90 graus) para a esquerda

 moveFwd(5000);//move 5000mm=5m

 goto EXP_OBSTACLE;

EXP_RIGHT:

 stop();

 turnCw(90);//gira 90 graus para a direita

 moveFwd(5000);//move 5000mm=5m

 goto EXP_OBSTACLE;

67

EXP_OBSTACLE:

 //Verifica obstaculos na direcao do movimento ou se o robo

 //terminou o trajeto ou se o botao CANCEL foi pressionado

 do{

 sensF=getSensorMean(SENS_FRONT);

 exp_canceled=!((short)(btn&0x01));

 }while((sensF<=LIMIT_DIST)&&(isItMoving())&&(!exp_canceled));

 goto EXP_AGAIN;

 }//endif exp_canceled

 motorEnable(OFF);

 printf(lcdPutc, "\fMISSION*\n*ABORTED");

 delay_ms(2000);

}//end explore

