UNIVERSIDADE DE SAO PAULO ESCOLA POLITECNICA
DEPARTAMENTO DE ENGENHARIA MECATRONICA

DESENVOLVIMENTO DE MICRORROBO MOVEL
AUTONOMO

MATHEUS MAURICIO PEREIRA CASTRO

SAO PAULO
2007

MATHEUS MAURICIO PEREIRA CASTRO

DESENVOLVIMENTO DE MICRORROBO MOVEL AUTONOMO

Projeto de Conclusdao de Curso
apresentado a Escola Politécnica da
Universidade de Sado Paulo para

obtencao do titulo de Engenheiro

Area de Concentracgéo:

Engenharia Mecatrénica

Sao Paulo
2007

MATHEUS MAURICIO PEREIRA CASTRO

DESENVOLVIMENTO DE MICRORROBO MOVEL AUTONOMO

Relatério Parcial do Projeto de
Conclusédo de Curso Il apresentado
a Escola Politécnica da

Universidade de Sao Paulo

Area de Concentracgéo:

Engenharia Mecatrénica

Orientador: Prof. Dr. Jun Okamoto

Junior

Sao Paulo
2007

FICHA CATALOGRAFICA

Castro, Matheus Mauricio Pereira
Desenvolvimento de microrrobé moével autbnomo - Sao
Paulo, 2007.

Trabalho de Formatura - Escola Politécnica da
Universidade de Sao Paulo. Departamento de Engenharia
Mecatrbnica e de Sistemas Mecanicos.

1.Robds 2.Hardware (Controle) 3.Software (Controle)

AGRADECIMENTOS

Agradeco ao meu orientador, Prof. Dr. Jun Okamoto Jr., por suas
valiosas orientacbes, inspirando grande motivacdo e transmitindo muita

confianca durante toda a conducéo deste trabalho.

Agradeco ao Engenheiro José Carlos dos Santos pelo constante

incentivo e apoio técnico, imprescindiveis para a conclusdo deste projeto.

Agradeco ao Laboratério de Percepcao Avancada do Departamento de
Engenharia Mecatrbénica da Escola Politécnica da USP por fornecer toda infra-

estrutura técnica e apoio financeiro.

Agradeco a minha familia, que indiretamente contribuiu, com seu apoio e

incentivo, para o bom andamento deste projeto de concluséo de curso.

Os que se encantam com a pratica
sem a ciéncia Sao como 0s timoneiros
gue entram no navio sem timao nem
bussola, nunca tendo certeza do seu
destino.

(Leonardo da Vinci)

RESUMO

O presente projeto diz respeito ao desenvolvimento de um robé moével
autbnomo de pequeno porte, sendo que o foco das atividades é dado ao
desenvolvimento de hardware e software de controle. Este robd é composto de
uma pequena plataforma movel com duas rodas acionadas independentemente
por dois motores de passo, sendo que o controle de posicionamento é feito em
malha aberta. O robd possui sensores infravermelhos de distancia, os quais
sao responsaveis pela percepcdo do ambiente no qual o robd esta inserido. Ha
ainda um sistema de interface com o usudrio, composto por botdes e um
display de cristal liquido. O software do robd é dividido hierarquicamente em
dois niveis: baixo nivel e alto nivel. A camada de baixo nivel diz respeito ao
software de controle, o qual trata da execuc¢éo das tarefas essenciais do robd,
como, por exemplo, o acionamento dos motores e a leitura dos sensores. A
camada de alto nivel refere-se ao software de aplicacdo do robd, isto €, o
software especifico para que o rob6 cumpra uma determinada tarefa, que,

neste caso, consiste em vagar pelo ambiente desviando de obstaculos.

ABSTRACT

This project concerns about the development of a small autonomous
mobile robot, being the activities focused on the development of controlling
hardware and software. The robot has a small two-wheeled mobile platform
driven by two stepper motors, which are under open loop positional control.
Infrared distance sensors are responsible for the environmental perception. In
addition, pushbuttons and a liquid crystal display allow a user interface system.
The robot software is divided in two levels: low level and high level. The low-
level layer is related to the controlling software, which executes the robot
essential tasks, like driving the stepper motors and acquiring the sensor signals.
The high-level layer runs the algorithm responsible for the accomplishment of
some task, which is, in this project, the mission of exploring the environment,

avoiding obstacles.

SUMARIO

L INTRODUGAO ...ttt 10
2 OBUIETIVO ..ottt ettt 11
S HARDW ARE e ettt 12
3.1 PLATAFORMA MOVEL oo e 12
3.2 HARDWARE DE CONTROLE ..., 14
3.2.1 MOAUIO de ProCeSSamMeENtO ...couneeeee et 15
3.2.1 MOAUIO de ACIONAMENTO «.cvneeeeeeee e e 16
3.2.2 MOdUlo de SeNSOMAMENTOenee e 17
3.2.3 M6édulo de Interface coOm 0 USUANO ...ceueenieeee e 19
3.2.4 MOdulo de AlIMENTAGADuuuiiiiieeee e 20
BB MONT AGEM. ..o e 21
A SO F T W ARE ... et 27
4.1 ACIONAMENTO DOS MOTORES DE PASSO....coiiciicii, 27
4.2 SOFTWARE DE CONTROLE ..., 29
4.2.1 Acionamento doS Motores de PasSS0 ...oouvvnienieiiiieeeee e, 30
4.2.2 Sensoriamento do AMBICNTE ...o.ooniie e 34
4.2.3 Interface COM O USUAITO ...nee e 35
4.3 SOFTWARE DE APLICAQAO .. 38
4.2.3MENU A OPGOES ..o 38
4.2.3 Algoritmo de Exploracdo do Ambientecceeviiiiiiiiiiiiiiiiieeeeeeees 39
D RESUL T AD S ... e e e e et 42

B CONCLUSOES ..o, 46

REFERENCIAS ...t 47
APENDICE A — Esquema do Circuito EIEtricocccccoovvein.n.. 48
APENDICE B - Layout da Placa de Circuito Impresso................. 49

APENDICE C - C6digo Fonte do Programa............cccoccoeeeveeeeenen.. 51

10

1 INTRODUCAO

A robotica mével é atualmente uma das areas de vanguarda nas
instituicbes de ensino e de pesquisa em todo o mundo, sendo que ha um
interesse cada vez maior nas aplicacbes comerciais que vém surgindo nesta
area. A robdtica movel possibilita a atuacdo ndo-supervisionada de maquinas
em tarefas complexas que requerem interacdo com o meio fisico. Busca e
salvamento de sobreviventes em situacfes de catastrofe, deteccdo de fogos
em florestas, transporte de objetos, vigilancia e limpeza de grandes areas,
exploracdo subaquética ou planetaria, aplicacdes em agricultura (colheita
autdonoma, tratamento da terra, semeadura, etc.) constituem alguns exemplos
de rob6s moveis. A adocdo comercial de robds moveis autdbnomos tem
ganhado recentemente um novo impeto através do aumento da sua taxa de
crescimento e de desenvolvimento, gracas a disponibilidade de simuladores e
sistemas de hardwares a precos acessiveis (COSTA, 2003).

Dentro deste contexto promissor surgiu o interesse em se desenvolver o
presente trabalho, o qual trata da concepc¢édo de um robdé mével autbnomo de
pequeno porte. Este robd é batizado neste projeto como robd Jerry, sendo que
o mesmo foi inspirado em robds de uma competicéo para resolver labirintos - a
competicdo Micromouse. Esta competicdo € um evento que acontece em
varias partes do mundo, onde microrrobés competem com a finalidade de
resolver um labirinto no menor tempo possivel.

O projeto e a construcdo do robd Jerry € uma atividade que
efetivamente envolve a combinagdo integrada de mecanica, eletrbnica e
computacdo. Desta forma, o desenvolvimento deste projeto de conclusdo de
curso prové uma oportunidade impar para se trabalhar todos os aspectos de

um projeto genuinamente mecatrénico.

11

2 OBJETIVO

Este trabalho tem o objetivo de integrar e consolidar os conhecimentos
obtidos durante o curso através do projeto completo de um sistema
mecatronico. Para isto, este projeto pretende o desenvolvimento de um robd
movel autbnomo de pequeno porte (robd Jerry).

O desenvolvimento do rob6 Jerry envolve duas etapas distintas. Na
primeira etapa tem-se como meta o desenvolvimento do prototipo fisico do
robd, o qual sera composto de uma pequena plataforma mével e um hardware
de controle. J4 na segunda etapa trata-se da programacao do rob6 Jerry, o que
envolve o desenvolvimento de toda uma estrutura de software de controle do
robd, bem como o desenvolvimento de um software de aplicacdo para que o

robd cumpra uma determinada tarefa.

12

3 HARDWARE

O hardware do rob6 Jerry diz respeito ao prototipo fisico do robd, sendo
este composto de uma plataforma mdvel (estrutura eletro-mecéanica) e de um
hardware de controle (circuito eletrénico). Este protétipo apresenta duas rodas
acionadas independentemente por dois motores de passo, sendo que O
controle de posicionamento serd feito em malha aberta. Sensores
infravermelhos de distancia sédo responsaveis pela percepcdo do ambiente no
qual o robd esté inserido. O robd conta ainda com um sistema de interface com
usuarios, composto por botbes, leds sinalizadores, e um display de cristal

liquido.

3.1 PLATAFORMA MOVEL

Decidiu-se por comprar de um fornecedor especializado uma plataforma
moével adequada ao projeto, resolvendo-se, desta forma, praticamente toda a
questao da estrutura eletro-mecanica.

A plataforma mével utilizada no projeto € a AIRAT2 (Figura 3.1) do
fornecedor Active Robots Ltd. Esta plataforma € composta por um chassi de
aluminio, duas rodas de aluminio revestidas com borracha, dois apoios
esféricos (ball-casters), e dois motores de passo acoplados as rodas.

As rodas sdo acionadas por dois motores Sanyo H546 (Figura 3.2).
Estes sdo motores de passo hibridos com 1,8° de angulo de passo. Eles
operam com tensdo nominal de 3,15 V e corrente elétrica de 1 A, fornecendo
um torque estatico de 0,147 N.m.

A locomocédo do robd através desta plataforma se da pelo acionamento
diferencial das duas rodas, conferindo ao rob6 a possibilidade translagéo
retilinea (para frente ou para tras), translacao curvilinea e rotacdo em torno do

proprio eixo. A estabilidade do movimento é garantida pelos apoios esféricos.

13

Figura 3.1 - Plataforma eletro-mecanica AIRAT2

Figura 3.2 - Motores de passo Sanyo H546

A Tabela 3.1 apresenta as especificacdes gerais da plataforma movel
AIRAT2.

14

Tabela 3.1 - Especifica¢des da plataforma moével AIRAT2

Item Descricao

Tamanho da 88 mm x 114 mm (largura x comprimento)

Plataforma
Frame c_Io 144 mm x 67 mm (aluminio)
Chassi
Roda de aluminio (851.3 mm com borracha) x 2, ball
Roda
caster tamanho pequeno x 2
Motor Motor de passo hibrido (Sanyo H546) x 2

3.2 HARDWARE DE CONTROLE

Este hardware foi projetado para desempenhar quatro funcdes basicas:

= Acionar e controlar os motores de passo;

» Fazer o sensoriamento do ambiente externo;

» Permitir uma interface com o usuério;

» Fornecer alimentacéo elétrica adequada para o circuito elétrico.

As trés primeiras funcionalidades citadas sdo gerenciadas pelo modulo
de processamento do hardware (microcontrolador).Na Figura 3.3, € mostrado o
esquema geral do hardware de controle e monitoragéo do robd.

O projeto do circuito eletrénico e o layout da placa de circuito impresso
foram elaborados com o auxilio do pacote de softwares OrCAD® da empresa
Cadence®. Duas ferramentas deste pacote de software foram utilizadas: o
OrCAD Capture, o qual foi usado para criar o projeto do circuito eletrénico em
sua forma esquematica (referencie o Apéndice A para consultar o esquema
elétrico completo do hardware); e o OrCAD Layout, o qual foi usado para
projetar a disposicao fisica dos componentes e circuitos na placa de circuito

impresso (referencie o Apéndice B para consultar o layout da placa).

15

14,4V N
I Mobdulo de Fases
>0V »| Acionamento
4 Comandos de
Acionamento
dos Motores
144V Moédulo de 50V Modulo de
i Allmentagéo Processamento
A
Sinal Analégico Comandos qe
dos Sensores Ent(rjzdg:dizlda v
sov | Modulo de Mddulo de < >
"| Sensoriamento Interface
50V /I\ T
|
A
Va4
%
DVQ

Figura 3.3 - Diagrama Esquemético do Hardware

3.2.1 M6dulo de Processamento

O moddulo de processamento € composto por um microcontrolador de 28
pinos, o PIC16F873 do fabricante Microchip Technology Inc. Este
microcontrolador possui 8K x 14 words de memoéria FLASH, 368 x 8 bytes de
memoria RAM, 256 x 8 bytes de memoria EEPROM, 5 canais conversores
analdgico-digital, e sera operado com uma frequiéncia de clock de 20MHz.

Este médulo é responséavel por controlar o acionamento dos motores,
fazer a aquisi¢cdo dos sinais dos sensores, gerenciar a interface com o usuério,
e ainda executar o software de aplicativo da tarefa a ser cumprida pelo rob6. A

Figura 3.4 mostra o diagrama simplificado deste sistema.

16

PIC16F873
Software de Aplicacéo
50V
>
Controle do Processamento Controle da L1 20mHz
Acionamento Sensorial Interface
Canal A/ID

Comandos de Sinal Analégico Comandos de
Acionamento dos Sensores Entrada e Saida
dos Motores de Dados

Figura 3.4 - Representacao Simplificada do Médulo de Processamento

3.2.2 M6édulo de Acionamento

O modulo de acionamento €& responsavel por acionar
independentemente as duas rodas do robé através de cada um dos motores de
passo (motor H546). Este sistema esta representado simplificadamente pela
Figura 3.5, e € composto por duas partes principais: o0 sequenciador l6gico
(circuito integrado L297) e o driver de poténcia (circuito integrado SLA7024). E
necessario ainda que o modulo de processamento (PIC16F873) envie 0s sinais
de comando de passo (clock), de sentido de rotac&o, e de habilitacdo para o

sequenciador.

dlock . fase A fase A
sentido de g fase \A > 1 fase A

oagio || - faseB | SLAT024 | faseB |)
Habilitagdo fase \B : | fase\B el

Figura 3.5 - Representacdo Simplificada do Modulo de Acionamento

O sequenciador I6gico € um circuito I6gico que controla a excitacdo das
bobinas do motor sequiencialmente, em resposta a um pulso de clock dado pelo
microcontrolador. No caso do robd Jerry, o sequenciador L297 faz a excitacdo
do tipo two-phase-on para motores de quatro fases, isto é, duas das quatro
fases do motor H546, estdo energizadas ao mesmo tempo em cada estado de
excitacdo. A Figura 3.6 mostra este tipo de sequenciamento, onde 0s sinais A,

B, C e D representam cada uma das quatro fases do motor.

17

Figura 3.6 - Sequenciamento de Fases

Os sinais de saida do sequenciador légico sdo transmitidos aos
terminais de entrada do driver de poténcia, através do qual € comandado o
chaveamento de corrente elétrica nas bobinas do motor. A fungdo do driver é
servir como um buffer de amplificacdo de corrente entre o sequenciador I6gico
e o motor. O driver SLA7024 faz o acionamento por PWM (Pulse Width
Modulation). As vantagens deste tipo de acionamento sdo: o uso de uma anica
fonte de tensao, a perda de poténcia é baixa, e a voltagem aplicada ao motor é
automaticamente ajustada para que o acionamento seja feito a uma corrente
elétrica pré-estabelecida. Resumindo, quando um pulso de clock é aplicado ao
sequenciador, os seus terminais de saida mudam para controlar o driver, 0

qual, por sua vez, faz o motor girar de um angulo de passo.

3.2.3 M6dulo de Sensoriamento

Sensores infravermelhos de distancia (sensor Sharp GP2D120, Figura
3.7) compbéem o moédulo de sensoriamento, o qual € responsavel pela
percepcao do ambiente no qual o robd esta inserido. O sensor Sharp GP2D120
gera uma saida analdgica inversamente proporcional a distancia entre o sensor
e um anteparo (Figura 3.8). Esta saida pode ser diretamente enviada ao
microcontrolador PIC16F873, pois este dispositivo possui internamente um
modulo conversor analdgico-digital, o que simplifica bastante a montagem do

circuito para este sistema (Figura 3.9).

18

3
e Draft | Reflectivity
3.0 ”* White 90%
| Gray 18%
S 28
: LR
N
= 20 I
Eosf%
N 3 g; 1:2 \\
; = \\‘ White
< 08 ™~ e
e
Tt
04 e
Gray I
0 Ll
Figura 3.7 - Sensor de 0 4 8 12 16 20 24 28 32 36 40
Distancia Sharp Distance to reflective object L (cm)
GP2D120 Figura 3.8 - Saida

(Analégica) do Sensor
Sharp GP2D120

O conversor analégico-digital do microcontrolador possui cinco canais de
entrada, mas a placa do circuito possibilita doze posicdes de fixacdo para os
sensores de distancia (Figura 3.10), permitindo, assim, diferentes
possibilidades de configuracées de montagem para estes sensores. A Tabela
3.2 mostra as posicoes de fixacdo dos sensores que compartiham o mesmo
canal de entrada do conversor. E importante observar que ndo se deve
conectar mais de um sensor num mesmo canal de entrada, pois isto provocaria
um curto-circuito entre os sensores ligados em comum (consulte o esquema

elétrico no Apéndice A).

Sinal Sinal
e infravermelho
Analbgico GP2D120 |€----------- >

Figura 3.9 - Representacdo Simplificada do Mddulo de Sensoriamento

A configuracéo do robd Jerry utilizara 4 sensores, fixados nas posicoes:
J1, J2, J3 e J4. Esta configuracéo distribui os sensores uniformemente ao redor

do robd, permitindo uma monitoracao uniforme do ambiente.

Figura 3.10 - Posi¢Bes Possiveis para Fixagdo dos Sensores

Tabela 3.2 - Ligacéo Elétrica entre
Canal A/D e Posicdo do Sensor

Canal A/D Posicdo do Sensor
ANO J1
AN1 J2, J5,J9
AN2 J3, J6, J10
AN3 J4,J7,J11
AN4 Jg, J12

19

20

3.2.4 M6édulo de Interface com o Usuario

O moddulo de interface com o usuario conta com um display de cristal
liquido de caracteres (LCD HO802A, Figura 3.11), quatro LEDs de sinalizacao,
e cinco chaves do tipo pushbutton. H& ainda a possibilidade de um sinalizador
sonoro (buzzer). A Figura 3.12 mostra o esquema simplificado deste modulo.

") BT =

l: D oav-0 ut RE

8l RA=T R
=X >
Y

. RK

®

: — Nl ®
k¥ ! 3 12

Figura 3.11 - Vistas Frontal e Traseira do LCD

7z

O LCD é o principal dispositivo de saida para o usuério. Este
componente possui oito colunas e duas linhas no mostrador de caracteres,
sendo que cada caractere é formado por uma matriz de 5x10 pontos. Neste
display pode-se imprimir, por exemplo, mensagens de status do robd. A luz de
fundo do mostrador ndo sera ligada neste projeto, a fim de se economizar

energia elétrica da bateria.

> LCD F--->
< Pushbuttons |[€----
PIC16F873
> Buzzer F--->
> LEDs F--->
Usuario

Figura 3.12 — Representac¢do Simplificada do Mdodulo de Interface com o Usuario

Um dos cinco pushbuttons (botéao reset) tem a funcdo de reinicializar o sistema
operacional do robd Jerry. Os outros quatro podem ter funcionalidades que

variaram de acordo com a tarefa programada no robé.

21

3.2.5 Médulo de Alimentacéao

O modulo de alimentacdo é responsavel por fornecer energia elétrica
para 0 motor e para toda a parte eletrobnica do circuito do hardware.
Basicamente um regulador de tensdo chaveado (circuito integrado LM2575)
compde este sistema (Figura 3.13). Um conjunto de baterias de voltagem
nominal de 14,4V é utilizado como fonte de alimentacdo para o driver do motor
(SLA7024) e como tensao de entrada para o regulador, o qual fornece tensao
de saida de 5V para os demais componentes do hardware. H4 ainda uma
chave de duas posic¢des, atuando diretamente no fornecimento de energia para

o hardware, para ligar e desligar o robd.

A

14,4V 5,0V Baixas Correntes T
o » LM2575
ON/OFF

Altas Correntes (~1A / motor) ~

»

Figura 3.13 — Representacao Simplificada do Médulo de Alimentacdo

3.3 MONTAGEM

As Figuras 3.14 e 3.15 mostram a placa de circuito impresso antes e

depois da montagem dos componentes eletronicos.

22

Figura 3.14 — Placa de Circuito Impresso do Hardware de Controle

Figura 3.15 — Placa do Circuito Montada

Para a fixacdo do hardware de controle a plataforma movel, utilizou-se

espacadores para empilhar, sobre a plataforma, o dissipador de calor e a placa

23

de circuito impresso, sendo a fixacdo feita por parafusos e porcas. A Figura

3.16 associada a Tabela 3.3 mostra os elementos utilizados na montagem.

Figura 3.16 — Componentes de Montagem

Tabela 3.3 — Lista dos Componentes de Montagem

Item Descricao Quantidade
1 Parafuso Allen (M3x30mm) 4
2 Espacador de poliestireno (g7,5mm x 12,5mm) 4
3 Placa inferior de aluminio dissipadora de calor 1

(3mm x 675mm x 925mm)
4 Placa inferior de aluminio dissipadora de calor 1
(3mm x 470mm x 790mm)
5 Espacador de poliestireno (g7,5mm x 5,0mm) 2
6 Espacador de poliestireno (g7,5mm x 8,0mm) 2
7 Parafuso Allen (M3x7mm) 5
8 Porca (M3) 4

Os espacadores de poliestireno foram feitos a partir do tambor
transparente de uma caneta BIC®. Este material é interessante pelo fato de se

24

obter, através de lixacdo manual, uma boa precisdo no comprimento do
espacador (precisdo por volta de 0,1dmm). Além disto, o0 custo e a
disponibilidade do material sdo outras vantagens importantes. A funcdo dos
espacadores é sustentar o empilhamento das placas, de modo a se obter dois
vaos livres para acomodar os componentes da placa de circuito impresso e
toda a fiagcdo do robd.

Os parafusos Allen M3 x 7mm sao usados para fixar os drivers SLA7024
e o regulador chaveado LM2575 no dissipador de calor (placas de aluminio).
Usa-se ainda uma pasta térmica entre os elementos condutores para melhorar
a conducao de calor. As placas de aluminio possuem furos com rosca para 0s
parafusos M3 x 7mm do dissipador, e furos lisos para os parafusos M3 x 30mm
de sustentacdo (Figura 3.17). A placa superior é utilizada para permitir o
contato entre o dissipador e os componentes a serem dissipados sem que haja
interferéncia mecanica entre o dissipador e outros componentes da placa, com

por exemplo, os conectores do motor de passo.

Furo sem Furo com
Rosca Rosca

v U SRR AR

Figura 3.17 — Dissipador de Calor

25

As Figuras 3.18 e 3.19 mostram o protétipo parcialmente montado. A fim
de se ter uma melhor clareza na visualizacdo dos detalhes, mostra-se nestas
figuras apenas a placa de circuito impresso (sem 0os componentes eletrénicos,

bem como sem os parafusos M3 x 7mm do dissipador).

. A U P A~ R R L . RN

Figura 3.19 — Montagem do Hardware de Controle sobre a Plataforma (Vista Frontal)

26

Finalmente pode-se ver na Figura 3.20 o hardware de controle montado
sobre a plataforma movel. As baterias sdo acomodadas nos compartimentos
frontal e traseiro da plataforma mdvel, sendo as mesmas presas por fitas

adesivas.

Figura 3.20 — Hardware de Controle Montado

27

4. SOFTWARE

O software do robd esta dividido hierarquicamente em dois niveis: baixo
nivel e alto nivel. A camada de baixo nivel diz respeito ao software de controle,
o qual trata da execucao das tarefas essenciais do robd, como, por exemplo, o
acionamento dos motores e a leitura dos sensores. A camada de alto nivel
refere-se ao software de aplicacéo do robd, isto é, o software especifico para
gue o robd execute uma determinada tarefa.

Todo o programa esté escrito em linguagem C, e o compilador utilizado
€ o PCM C Compiler do fabricante CCS, Inc. Este é um compilador especifico
para a familia de microcontroladores PIC de 14 bits. O programa é gravado no
microcontrolador PIC16F873 do rob6 Jerry através do programador universal
TOPMAX do fabricante EETools, Corp.

4.1 ACIONAMENTO DOS MOTORES DE PASSO

Uma vez que o robd utiliza motores de passo sem uma configuracéo de
realimentacdo de posi¢céo, deve-se evitar a todo custo que o motor emperre ou
perca passo. A solucdo para este tipo de problema € o acionamento com um
perfil de velocidades e acelera¢cbes adequados.

Este robd estad projetado para movimentar-se a baixas velocidades, e,
assim, podemos admitir que o motor fornece um torque (T.qg) de cerca

0,05Nm. Portanto, em cada roda do robd, tem-se uma forca (Foga) de:

T 0,05
Fro = =22 = 22 = 2N .
roda ¢r0da 0’051 (4 1)
2 2

Como sao duas rodas, a for¢ca de impulséo (F) do robd é:

F=F_ x2=4N (4.2)

roda

28

O robd possui uma massa (m) de cerca de 2 kg. Assim o rob6 deve ser
acionado com uma aceleracéo (a) de:

a= -2 _omys? (4.3)
m 2

Entdo, sabendo que o motor tem uma resolugdo de N, = 200

passos/revolugdo, a aceleracdo em termos de nimeros de passo (a,) € dada

por:
a =& _ 2. 2482passos/s? (4.4)
P T Them | Ax0051 TP '
N 200

p

Por seguranca, seja a, = 2000 passos/s’.

Para acelerar o motor, deve-se emitir pulsos em intervalos de tempo
decrescentes até que se atinja uma taxa maxima. Da mesma forma, para
desacelerar o motor, deve-se aumentar o intervalo de tempo entre um pulso e
outro até que o motor pare. Estes intervalos de tempo podem ser calculados a
partir da equacdo de movimento com aceleracao constante:

S =%apt2 (4.5)

Sendo que aqui, s é a distancia percorrida em numero passos, a, € a
aceleracdo em passos/s?, e t é o tempo decorrido em segundos.

Rearranjando a equacéo (4.5), tem-se:

t= |28 (4.6)
ap

Assim, finalmente, pode-se calcular a tabela de velocidades utilizada

para o acionamento dos motores de passo:

Tabela 4.1 — Aceleracdo do Motor de Passo

s t At=t-tiy Fregliéncia
(passos) (segundos) (segundos) (hertz)
0 0,000000 - -

1 0,031623 0,031623 31,623
2 0,044721 0,013099 76,344
3 0,054772 0,010051 99,494
4 0,063246 0,008473 118,018
5 0,070711 0,007465 133,956
6 0,077460 0,006749 148,170
7 0,083666 0,006206 161,126
8 0,089443 0,005777 173,109
9 0,094868 0,005426 184,311
10 0,100000 0,005132 194,868
11 0,104881 0,004881 204,881
12 0,109545 0,004664 214,425
13 0,114018 0,004473 223,562

29

4.2 BIBLIOTECA DO SOFTWARE DE CONTROLE

O software de controle consiste de um conjunto de fungdes e rotinas que
tratam da execucdo das tarefas essenciais do modulo de processamento.
Estas tarefas essenciais podem ser enquadradas em trés categorias, de acordo
com o0os modulos do hardware de controle com o0s quais estas tarefas estao
relacionadas. A primeira categoria compreende um conjunto de funcbes e

rotinas para se fazer o acionamento dos motores; a segunda cuida dos

30

procedimentos de aquisi¢éo dos sinais provenientes dos sensores de distancia;
enguanto que a terceira categoria disponibiliza uma biblioteca para controlar os
dispositivos de interface com o usuario. Estes trés grupos de bibliotecas
compdem o software de controle, o qual fornece uma plataforma para que o
algoritmo de aplicagéo do rob6 possa ser executado pela camada de software

de alto nivel.

4.2.1 Acionamento dos Motores

A seguir sdo nomeadas e descritas as funcdes e rotinas que compdem

esta biblioteca do software de controle. Esta categoria conta com trés rotinas

principais:

MOTORENABLE

Sintaxe: motorEnable (enable)

Parametros: enable € uma variavel booleana.

Retorno: Indefinido.

Descricao: Habilita ou desabilita o funcionamento dos motores
de passo (enable=FALSE: motores desligados;
enable=TRUE: motores ligados).

MOTORLEFT

Sintaxe: motorLeft (step, dir)

Parametros: step € uma variavel inteira de 16 bits ndo-negativa.

dir € uma variavel booleana.

31

Retorno: Indefinido.
Descricao: Esta rotina aciona o motor do lado esquerdo do

robd. A variavel step informa o nimero de passos a
ser girado pelo motor; e dir se refere ao sentido de
rotacdo do motor (dir=FALSE: sentido anti-horario;
dir=TRUE: sentido horario).

MOTORRIGHT

Sintaxe: motorRight (step, dir)

Parametros: step é uma variavel inteira de 16 bits ndo-negativa.
dir € uma variavel booleana.

Retorno: Indefinido.

Descricéo: Esta rotina aciona o motor do lado direito do rob6. A

variavel step informa o numero de passos a ser
girado pelo motor; e dir se refere ao sentido de
rotacdo do motor (dir=FALSE: sentido horario;

dir=TRUE: sentido anti-horério).

A partir destas trés rotinas basicas, outras rotinas podem ser obtidas:

MOVEFWD
Sintaxe: moveFwd (dist)
Parametros: dist € uma variavel inteira de 16 bits ndo-negativa.

Retorno: Indefinido.

Descricao:

MOVEBWD

Sintaxe:

Parametros:

Retorno:

Descricao:

TURNCCW

Sintaxe:

Parametros:

Retorno:

Descricao:

TURNCW

Sintaxe:

Parametros:

32

Rotina para movimentar o robd para frente em dist

milimetros.

moveBwd (dist)

dist é uma variavel inteira de 16 bits ndo-negativa

Indefinido.

Rotina para movimentar o rob6 para trds em dist

milimetros.

turnCcw (degree)

degree é uma variavel inteira de 16 bits néo-

negativa.

Indefinido.

Rotina para girar o robd em torno do préprio eixo no

sentido anti-horéario de degree graus.

turnCw (degree)

degree é uma variavel inteira de 16 bits nao-

negativa.

Retorno:

Descricao:

STOP

Sintaxe:

Parametros:

Retorno:

Descricao:

33

Indefinido.

Rotina para girar o robé em torno do préprio eixo no

sentido horario de degree graus.

stop ()

Nenhum.

Indefinido.

Faz com que o robd pare imediatamente.

Tem-se ainda uma funcéo para verificar se o rob6 estd se movendo ou

ndo. Isto é particularmente Util para gerenciar o uso de varios comandos de

movimentacdo em sequéncia.

ISITMOVING

Sintaxe:

Parametros:

Retorno:

Descricao:

status = isltMoving ()

Nenhum.

status é uma variavel booleana.

Verifica se o robd esta em movimento

(status=FALSE: o robb esta parado; status=TRUE:

o robd esta em movimento).

34

H& ainda uma rotina referente aos parametros de aceleracdo do motor

de passo, discutidos anteriormente.

SETUPACCELERATION

Sintaxe: setupAcceleration ()

Parametros: Nenhum.

Retorno: Indefinido.

Descricao: Escreve na memoria do microcontrolador os valores

dos parametros de aceleracdo do motor de passo.
Esta rotina deve ser executada antes do uso das

demais rotinas de movimentacao.

4.2.2 Sensoriamento do Ambiente

Esta biblioteca diz respeito ao uso dos sensores Sharp GP2D120. Este
sensor gera uma saida analégica inversamente proporcional a distancia entre o
sensor e um anteparo (veja a Figura 3.8 no Capitulo 3). Esta saida analdgica é
lida pelo médulo conversor analdgico-digital do microcontrolador PIC16F873,
transformando-a em um ndmero inteiro. A seguir sdo mostradas as funcdes e

rotinas presentes nesta biblioteca.

SETUPSENSOR

Sintaxe: setupSensor ()

Parametros: Nenhum.

35

Retorno: Indefinido.

Descricao: Inicializa 0 médulo de sensoriamento.

GETSENSOR

Sintaxe: value = getSensor (sens_id)

Parametros: sens_id é uma variavel inteira de 8 bits nao-
negativa. Valores validos de sens_id devem
pertencer ao intervalo [0, 4].

Retorno: value é uma variavel inteira ndo-negativa.

Descricao: value recebe o valor gerado pelo sensor de
distancia identificado por sens_id, sendo que
sens_id corresponde a um dos cinco canais do
maodulo conversor analdgico-digital do
microcontrolador.

GETSENSORMEAN

Sintaxe: value = getSensorMean (sens_id)

Parametros: sens_id é uma variavel inteira de 8 bits nao-
negativa. Valores validos de sens_id devem
pertencer ao intervalo [0, 4].

Retorno: value é uma variavel inteira ndo-negativa.

Descricéo: value recebe média aritmética de oito leituras

consecutivas do sensor de distancia identificado por

sens_id, sendo que sens_id corresponde a um dos

36

cinco canais do madulo conversor analdgico-digital

do microcontrolador.

4.2 .3 Interface com o Usuério

As principais rotinas e funcdes da biblioteca de interface com o usuario

séo apresentadas a sequir.

LCDINITIALIZATION

Sintaxe:

Parametros:

Retorno:

Descricao:

LCDPUTC

Sintaxe:

Parametros:

Retorno:

Descricao:

IcdInitialization ()

Nenhum.

Indefinido.

Executa os procedimentos de inicializacdo do

display de cristal liquido.

lcdPutc (c)

¢ € uma variavel do tipo caractere ASCII.

Indefinido.

Envia um caractere ao display de cristal liquido.
Existem trés caracteres especiais:

AF: limpa o display, e o cursor vai para 0 comeco da

primeira linha;

LCDGETC

Sintaxe:

Parametros:

Retorno:

Descricao:

WAITFORBTN

Sintaxe:

Parametros:

Retorno:

Descricao:

37

An”. move o cursor para o comec¢o da segunda linha;
Ab”. corresponde ao comando de backspace.
Observagdo: Para o envio de um string de
caracteres ao display, pode-se fazer uso da rotina
printf do compilador, com a seguinte sintaxe:

printf (lcdPutc, "string").

¢ =lcdGetc (X, y)

X ey sdo variaveis inteiras de 8 bits ndo negativas.

c € uma variavel do tipo caractere ASCII.

c recebe o caractere atual da posicao (x, y) do

display.

button = waitForBtn ()

Nenhum.

button é uma variavel inteira de 8 bits.

Aguarda até que algum botdo do robd seja

pressionado, armazenando o valor correspondente

na variavel button.

38

4.3 SOFTWARE DE APLICACAO

O software de aplicagdo desenvolvido neste projeto tem o intuito de
ilustrar o uso de todas as funcionalidades presentes neste protétipo. Para isto,
desenvolveu-se um aplicativo onde o usuario tem a opcédo de executar testes
para verificar o funcionamento dos motores e sensores do robd, bem como a
opcado de executar um algoritmo de exploracdo, no qual o rob6 vaga
aleatoriamente pelo ambiente, desviando de obstaculos encontrados ao longo

de sua trajetoria.

4.3.1 Menu de Opcdes

A interface com o usuario é feita através de um menu de opcdes, o qual
€ exibido no display de cristal liquido e acessado pelos seguintes botdes

apresentados na Tabela 4.2:

Tabela 4.2 — Botbes para Navegar no Menu de Op¢bes

Botao Descricao Simbolo
Navega para a direita ciclicamente entre as
NEXT ~ >
opc¢Oes de um mesmo grupo do menu.
Navega para a esquerda ciclicamente entre as
PREV < <
opc¢Oes de um mesmo grupo do menu.
Confirma a opc¢ao exibida no menu;
OK . Soa o v
Vai para o subgrupo de opcdes inferior ao atual.
CANCEL Cancela a opcgao exibida no menu; %

Vai para o subgrupo de opc¢des superior ao atual.

39

Ao se navegar pelo menu do rob6, o display de cristal liquido exibe as

opc¢Oes mostradas na Figura 4.1

4.3.2 Algoritmo de Exploragdo do Ambiente

A opcao Explore do menu de opcdes executa a tarefa propriamente dita
para a qual o robd foi programando. Esta tarefa consiste em explorar o
ambiente, desviando de obstaculos. Para cumprir tal propdsito, um algoritmo

simples foi desenvolvido (Figura 4.2).

Explore Tests
Motors sensors
Move FwD Move BwWD Turn CQw Turn Qw
200mm 100mm 360deg 180deg
Front Back Right Left
Sensor Sensor Sensor Sensor

Figura 4.1 — Estrutura do Menu de Opc¢des Exibido no Display

Este algoritmo consiste dos seguintes passos. Primeiramente € feita a
leitura dos quatro sensores, 0s quais estédo posicionados na frente, na traseira,
e nas laterais do rob6 (posi¢des J1, J2, J3 e J4, vide Figura 3.10). A seguir um
namero aleatdério € gerado através de uma manipulacdo do valor do timer
interno do microcontrolador. Este valor obtido é usado para que o algoritmo

decida por alguma das quatro opc¢des: o robd

Inicio

Botdo CANCEL

foi pressionado?

Leia
Sensores

i++

Gere um namero
aleatério rand no
intervalo [0, 255]

A 4

Gire
180°

Livre?

Desligue Eim
Motores
Pare
(robd cercado)
Frente
_ Pare
Livre?
Traseira
. Pare
Livre?
Direita
_ Pare
Livre?
Esquerda
Pare

A 4

Gire 90°
a direita

\ 4

\ 4

Gire 90°
a esauerda

\4

\ 4

Mova 5 m
para frente

Frente

Livre?

Deslocou

5m?

Botdo CANCEL

foi pressionado?

Figura 4.2 — Fluxograma do Algoritmo para Exploracdo do Ambiente

40

41

segue em frente, o robd segue na mesma direcdo em sentido oposto, o robd
segue na direcdo perpendicular a direita, ou o robé segue na direcdo
perpendicular a esquerda. Porém, antes que a movimentacdo na direcédo e
sentido escolhidos comece, o algoritmo verifica se a opgéo escolhida esté livre
de obstaculos (isto é feito através da checagem do valor lido anteriormente
pelo sensor correspondente). Se o caminho escolhido estiver bloqueado, volta-
Se para 0 passo em gue um numero aleatério é gerado, e, entdo, sorteia-se
novamente uma das quatro op¢cdes de movimentagcdo. Caso tenham sido feitas
20 tentativas de se encontrar um caminho livre, e em todas elas detectou-se a
presenca de obstaculos, o rob6 para e considera que esta cercado em todas as
dire¢des, voltando ao inicio do algoritmo. Caso o botdo CANCEL tenha sido
pressionado em algum momento, o algoritmo é finalizado. Por outro lado,
voltando ao passo anterior, se 0 caminho aleatério escolhido estiver livre de
obstaculos, o robd segue por este caminho. A partir deste ponto, monitora-se
trés situacdes para concluir se a execucdo deve voltar para o inicio do
algoritmo. Estas situacfes sao: o robd encontra um obstaculo pela frente, o
robd desloca-se por 5 metros pelo caminho escolhido, o botdo CANCEL é
pressionado em algum momento. Na ocorréncia de qualquer uma destas trés
situacdes, volta-se para o inicio do algoritmo. No caso da ultima situacéo

(botdo CANCEL pressionado), a execucédo do algoritmo € finalizada.

42

5 RESULTADOS

Ao longo do desenvolvimento deste trabalho, conduziu-se alguns testes
e experimentos com a finalidade de definir e verificar os requisitos do projeto.
Os resultados mais significativos destes testes e experimentos sao
apresentados e discutidos a seguir.

Primeiramente testou-se o circuito do mdédulo de acionamento. Nos
testes, observou-se que, sem carga aplicada, o motor responde bem até uma
frequéncia de acionamento de cerca de 1kHz. Este valor corresponde a uma
rotacao de 300rpm, e uma velocidade linear do robd de cerca de 80cm/s, 0 que
€ um valor alto para os propésitos deste rob6. A velocidade maxima
especificada neste projeto é de até 18cm/s (223Hz). Nesta frequéncia de
acionamento, verificou-se que o motor fornece torque suficiente para a
movimentagao plena do robd.

Testes realizados no circuito do moddulo de alimentacdo também
mostram resultados satisfatorios. O componente LM2575 (regulador chaveado)
regula corretamente a tensdo em 5,0V para valores de entrada maiores que
7,0V e menores que 40V. A tensdo nominal fornecida pelas baterias é de
14,4V, e, portanto, as variagdes observadas neste valor nominal de tenséo, na
faixa de 13V a 18V, estdo dentro das especificacfes. Foi também observado
que este conjunto de baterias prové uma autonomia de funcionamento
ininterrupto ao robé de cerca de trinta minutos, o que € suficiente para os
propadsitos deste prototipo.

Acreditava-se que sensor de distancia apresentaria restricdes quanto ao
tipo de superficie do anteparo (obstaculo). No entanto, testes realizados com
um sensor SHARP GP2D120 mostraram que este tipo de sensor é pouco
sensivel ao tipo de superficie. Nas especificagbes do sensor consta que
anteparo deve ser um objeto de superficie opaca. A fim de se verificar a
influéncia do tipo superficie do objeto na resposta do sensor, realizou-se
ensaios cuidadosos para trés tipos superficies: opaca escura (papel pardo),
opaca branca (papel sulfite) e brilhante (papel aluminio). Os resultados sdo

mostrados na Figura 5.1. A faixa de valores ensaiada comum para os trés tipos

43

de superficie foi de 10cm a 60cm. Nesta faixa praticamente ndo se observa
diferenca na resposta entre as superficies branca e escura; e se vé uma
pequena discrepancia entre estas duas superficies e a superficie brilhante. Isto
mostra que, adotando uma certa tolerancia para a medi¢éo, 0 sensor se mostra
pouco sensivel a influéncia do tipo de superficie. Desta forma, confirmou-se
que os dados adquiridos pelo sistema de sensoriamento sdo confiaveis o

suficiente para serem usados pelo rob6é em tomadas de decisao.

Figura 5.1: Influéncia do Tipo de Superficie na
Resposta do Sensor SHARP GP2D120

700

600 4

500

!

\

400 *
\ ——Escura

—#— Branca
* Brilhante

Conversor AD

300

200

109 M

0 S R
0 20 40 60 80 100
Distancia (cm)

A Tabela 5.1 resume os parametros de projeto analisados nos testes e
experimentos apresentados acima.

Finalmente, para validar tanto o proto6tipo construido e como o software
desenvolvido, foram realizados testes com o0 robd em duas situacdes
particulares. Na primeira situacdo, o robd foi colocado para explorar uma
pequena area delimitada (Figura 5.1). Na segunda situagdo, permitiu-se ao

robd explorar liviemente um amplo corredor (Figura 5.2).

Tabela 5.1 — ParAmetros de Projeto Analisados

Parametros Valores Comentarios
Frequéncia A esta frequéncia, ha
Maxima de 223 Hz torgue suficiente para a

Acionamento

Velocidade
Méaxima do
Rob6

Tensao
Nominal das
Baterias

Autonomia do
Rob6

Resposta do
Sensor de
Distancia

movimentacgao do robd

Velocidade adequada para

18 cm/s e)
0s propositos do projeto

Variacédo no Valor Nominal

144V na Faixa de 13V a 18 V

Considerando
Funcionamento Pleno e
Ininterrupto

Aproximadamente
30 minutos

Pouco Sensivel ao Tipo de

4cma30cm Superficie do Anteparo

Figura 5.1 — Exploracdo de uma Pequena Area Delimitada

44

45

Figura 5.2 — Exploracdo Livremente de um Amplo Corredor

Em ambas as situacdes de exploracao, foi possivel constatar que o robd
cumpriu satisfatoriamente a tarefa para o qual foi programado, ou seja, vagou
aleatoriamente pelo ambiente sem colidir com nenhum obstéaculo.

46

6 CONCLUSOES

Neste projeto de formatura pode-se chegar a um prot6tipo de robd mével
autbnomo plenamente funcional, bem como desenvolver um aplicativo de
software para que o robé cumprisse uma determinada tarefa satisfatoriamente.

O desenvolvimento deste microrrobd passou por todas as etapas de
projeto de hardware e software. Primeiramente fez-se o projeto do hardware de
controle, passando em seguida para concepc¢ao do layout da placa de circuito
impresso. Com o hardware de controle finalizado, partiu-se para o
desenvolvimento do software de controle. Ao término desta etapa, obteve-se
uma plataforma de desenvolvimento, através da qual pbéde-se finalmente
desenvolver um aplicativo para exploracdo de ambiente.

Deve-se notar que esta plataforma de desenvolvimento, composta pelo
hardware e software de controle, possibilita 0 desenvolvimento de aplicativos
com um grau bem maior de complexidade do que o apresentado. Desta forma,
ha um grande potencial para que trabalhos futuros venham ser desenvolvidos
tendo como base este robd. Uma sugestdo promissora, com fins académicos, é
0 uso deste protoétipo para resolver labirintos, jA que este projeto fornece um
rob6 com uma estrutura adequada para este propésito. Também € sugerido o
uso deste trabalho como base para a construcdo de novas versdes do robd

Jerry.

47

REFERENCIAS

ALLEGRO MICROSYSTEMS, INC. SLA7024M, SLA7026M, and SMA7029M.
Disponivel em: <http://www.allegromicro.com/en/Products/Part_Numbers/
97024/97024.pdf>. Acessado em: 24 nov 2007.

CCS, INC. C Compile Reference Manual. Disponivel em:
<http://www.ccsinfo.com/ downloads/ccs_c_manual.pdf>. Acessado em: 15 abr.
2007.

COSTA, A. H. R. Robo6tica Mével Inteligente: Progressos e Desafios. 2003.
1v. Tese (Livre Docéncia) - Escola Politécnica, Universidade de Séao Paulo, Sdo
Paulo, 2003.

CRYSTALFONTZ AMERICA, INC. CFAHO802A-GYH-JP: 8x2 STN, Positive
Transflective Yellow-Green LCD with Green LED Backlight. Disponivel em:
<http://www.datasheetarchive.com/CFAH0802A-YYE-JP-datasheet.html>.
Acessado em: 24 nov 2007.

KENJO, T. Stepping Motors and their Microprocessor Controls. 12 edicao.
Oxford University Press, 1984.

MICROCHIP TECHNOLOGY INC. PIC16F87XA Data Sheet: 28/40/44-Pin
Enhanced Flash Microcontrollers. Disponivel em: <http://wwl.microchip.com/
downloads/en/DeviceDoc/39582b.pdf>. Acessado em: 15 abr. 2007.

NATIONAL SEMICONDUCTOR CORPORATION. LM1575/LM2575/
LM2575HV. Disponivel em: <http://cache.national.com/ds/LM/LM1575.pdf>.
Acessado em: 24 nov 2007.

STMICROELETRONICS COMPANY. L297: Stepper Motor Controllers.
Disponivel em: <http://www.st.com/stonline/products/literature/ds/1334/1297.
pdf>. Acessado em: 24 nov 2007.

http://www.allegromicro.com/en/products/part_numbers/97024/

48

to Elétrico

ircui

N

APENDICE A - Esquemado C

+5Y +5v
a1 c5 w2 us
Wi 10K _r ru.mr Ve A CNTRL_SPLYa
e il Vret 3 CNTRLISPLYS
== N c
RESET ——c4 = 18chciock 3 Na oura [|
10uF 10 cwiccw INa OuTa 1
i 0| EnaBLE SENS1 INo oum 1
o 8 RESET SENS2 iNb outh
e CONTROL S
= —L{swc HALFFFULL OFF_DELAYa [-2-
—2| HouE osc SENSEa OFF_DELAYD oy e
i —3d M1 REFERENCED GNDa i
o 3 ~—8d INH2 GND SENSED GNDb |- R21 R20
RAO/ANC MCLRVpp
3 B o7 STATOZAM 47K 47K
- Vref RCOMOSO!
KIC10UT R ecaiccp cio —1cs
I ICCPY =
- = 470pF |—|deuﬂ
RCAISDUSOA |32
< —24 RBoINT RCS/SDO [-18 SONS
RB1 RCBITX/CK = 4
RE2 RCTIRXIOT g
RB3PGHM
RB4
RBS k- v
. L RB7IPGD = =
s 3
SCHCLKI Vdd
Y1 0SC2/CLKO MN e H % = R aeLY SN
Vs CNTRL_SPLYa Stapper Hotora
L ..I 01 |_l Veet [GNTRLZSPLYD e
c
18, 58
LOCK o OuTa
oz = -1 cwiccw S e
s ENABLE SENS1 ous (-1t
c2 ==c3 RESET SENS2 ouTh
CONTROL
26 246 —1syNe HALFIFULL OFF_DELAYa (2=
e b —2{ HoME osc SENSEa OFF_DELAYb) w5V
g 3| iNH1 REFERENCED GNDa
—Bd iz GND SENSED GNDb. e =5
77 STATG2AM 47K 47K
LlOAm C15
| 4700F 470,
k- =470 oF
Rt -
10K, =
. | +5Y +5V 5V 45V
—a T
= pETR
309 R2 1 gun 309 RS 1 swa 309 RE 4 3909 R4 s
em e 0 ! e
ConT NEXT PREV oK CANCEL
16D Wiodule R3 = Re = R = R12 =
3308 330R 330R 330R
Ra. R7 R10 R13
22 2K2 22 22
|
1 02 03 04 |
LD LED LED LED |
g X % %
Sk
+5v = = = =
Infraced Sensors .
J10 Jit J12
1 CE
T |N.A
o cons CoN3 oNs
| 45 id 8 5y
LT 1 1 1
1
4
CON3 CON3 CON3 CON3 u R32
330R
. . 330uH
32 33 g4 C17
1 1 1 OAF 0s 19
| 1N5819 330uF |08
ON_LED Advanced Perception Lab at the University of Sao Palo
N
CON3 CON3 CON3 CON3 = = A Tile
| 5 Jerry Robot LPA
2 5] Rev
Jerry: MainCircuitry - Drawn by Matheus Castro 01

49

APENDICE B - Layout da Placa de Circuito Impresso

A seguir seguem desenhos referentes ao layout da placa de circuito
impresso do hardware de controle. As regides em vermelho representam furos
passantes na placa. As linhas em magenta representam as trilhas de circuito
na face superior da placa, enquanto que as linhas em ciano mostram as trilhas
na face inferior. A placa possui dimensdes de 4,450 pol x 3,550 pol (113,0 mm
X 90,2 mm).

111 113 14 e 212 .
L L]
& Eed’ [eseem, [e9] XX %
5 o = Left Right . T
..-—:. . Motar 118 217 Motar - |E] :;—'l
B e (o] B % & R2 al=e
o *le|2f2.® |(me il * P
Batieries - *
onle .. . *l s »
* e Qe . *ep ISR " . e ®
. 5 0@ i 1 l§| 3] tlel e
.y | ® m|R2e ® ® —R23 I 5
bl B g ®14 ¢ |noof BOC 899 pi7 o R24 .92500150@ s R22 it Il
» o L . . ® »
. MNERL &].cm. @ ocwo&] * b
o L[Te .|
el @ o @(i)@(f) "
L]
2| ® B |5 o® O3] ¥ Tig | ®
L]
u = ° ...‘ oooo oooo .'
® ® L » bd ZURZ TR0 1B @
o |» s » T - o ™ .
* ® | sie 7o2aM ¥, e . *| | *% 5La 702anm
1% T |& . £ ° o ™ o el o
MEGE ‘. L1 ® .‘ . ®c1Z® S @
* _|e ° e® [m e UG s
L] 'ﬁ & P *
®| o |o . ® ® _ L2575 s o eEae
~lel 4 .] * EWE
® o B ugze @ us R3Z
b L * . ® @&, & @ JETEN . @ . " . a =78
._: ‘: e o | @
[3 b [——e| o2 sws | N | swa o sws FET Reset
ol grlesles) - * rE@
®) @RS RE& y
%'_'.-[o olle o]« * ® . s 3 . ® ® ® s e]e e
2, 2 Jer ry Laborataria de Percencea Avancada
s |:;_ mr. v1.0 @[Escola Poliiecrica - USP m @

50

Labou!auo de Percrocea Fvancada nu]"m

Escola Polilecmica - USP

|® @

Te—

_—

RS

sheseam

sesehe

7024M

XEEREEEE =

uﬂ Laborataria de Percrocaa ﬁuntena ?

Escola Poliiecrice - USP 1o

APENDICE C - Cédigo Fonte do Programa

/**

Explorer.c

Este programa, em linguagem C e compilado
atraves do PCM C Compiler do fabricante
CCS, Inc., eh um aplicativo para Robo
Jerry versao 1.0, ilustrando o uso de
todas as funcionalidades presentes neste
prototipo. A interface com o usuario eh
feita atraves de um menu de opcoes,
exibido no display de cristal ligquido e
acessado pelos botoes: NEXT (=proxima
opcao), PREV(=opcao anterior), OK
(=confirma opcao), e CANCEL (=cancela
opcao) . Neste aplicativo tem-se a opcao
de executar testes para verificar o
funcionamento dos motores e sensores do
robo, bem como a opcao de executar uma
rotina de exploracao do ambiente, onde o
robo vaga indefinidamente pelo ambiente

desviando de obstaculos.
***/

//inclui a biblioteca do PIC16F873
#include <16F873.h>

//Configuration words para o PIC16F873
#fuses HS,NOPROTECT, NOWDT, NOPUT, NOBROWNOUT
//Habilita o uso da funcao delay

#use delay (clock=20000000)

#define STEP LEFT PIN CO //pulsos de clock p/ o motor de passo
//esquerdo

#define DIR _LEFT PIN Cl //direcao de rotacao p/ o motor de passo
//esquerdo; 0->CCW

#define STEP RIGHT PIN C2 //pulsos de clock p/ o motor de passo
//esquerdo

#define DIR RIGHT PIN C3 //direcao de rotacao p/ o motor de passo

//direito; 0->CCW

#define MT ENABLE PIN C4 //sinal de habilitacao do funcionamento
//dos motores; 1->habilita

#define LED1 PIN C5 //pinos correspodentes aos 4 leds de
//sinalizacao

#define LED2 PIN C6

#define LED3 PIN C7

#define LED4 PIN A4

#define SW2 PIN C5 //pinos correspondentes aos 4
//pushbuttons

#define SW3 PIN C6

#define SW4 PIN C7

#define SW5 PIN A4

#define OPCYCLE FREQ 65036 //define a frequencia de interrupcao;
//65036->200us->5kHz

f#define NEXT 0x07 //mascara p/ leitura do botao SW2
#define PREV 0x0B //mascara p/ leitura do botao SW3
#define OK 0x0D //mascara p/ leitura do botao SW4
#define CANCEL Ox0E //mascara p/ leitura do botao SW5
#define OFF 0 //usados como parametros para
//habilitar/desabilitar os motores

#define ON 1

51

52

#define FWD 0 //usados como parametros para definir o
//sentido do movimento do robo (frente/tras)

#define BWD 1

#define SPEED MAX 13 //nivel de velocidade maximo para os
//motores

#define LCD_TYPE 2 //configuracao do display: O=caracter
//5x7 pontos, 1=5x10, 2=2 linhas

#define LCD LINE TWO 0x40 //endereco no LCD RAM para a segunda
//linha do display

#define SENS FRONT 0 //canal AD para o sensor frontal
#define SENS BACK 2 //canal AD para o sensor traseiro
#define SENS RIGHT 1 //canal AD para o sensor lateral direito
#define SENS LEFT 3 //canal AD para o sensor lateral
//esquerdo

#define LIMIT DIST 0x2A //valor referente a distancia limite que
//o robo considera como obstaculo

//Variaveis globais

int led;//corresponde ao output dos leds:
//1led=0b'XXXX<LED1><LED2><LED3><LED4>', active high

int btn;//corresponde ao input dos botoes:
//btn=0b'XXXX<SW2><SW3><SW4><SW5>', active low

//Variaveis usadas no algoritmo de leitura dos pushbuttons
int btn prev;

int btn current;

//Variaveis usadas no acionamento dos motores de passo
unsigned int mtl speed; unsigned int mtr speed;

unsigned long mtl step current;

unsigned long mtr step current;

unsigned long mtl step target;

unsigned long mtr step target;

unsigned int mtl counter;

unsigned int mtr counter;

/= //
J e INTERFACE COM USUARIO------—--—-- //
/= //

//Esta estrutura eh referenciada a pinos de I/0 do microcontrolador
//para ter acesso aos pinos do LCD. Os bits estao em ordem crescente.
//Por exemplo, ENABLE eh o pino B3
struct lcd pin map {

boolean unused;

boolean rs;

boolean rw;

boolean en;

int data: 4;
} lcd;
#byte lcd=6//coloca a estrutura inteira no PORTB (no endereco 6)
//Este byte deve ser enviado ao LCD para fazer sua inicializacao
byte CONST LCD INIT STRING[4] = {0x20 | (LCD_TYPE << 2), 0x08, 0x01,
0x06};
//Usados para configurar a direcao do I/0 port
STRUCT lcd pin map const LCD WRITE = {0,0,0,0,0};//para o modo de
//escrita, todos os pinos sao saidas
STRUCT lcd pin map const LCD READ = {0,0,0,0,15};//para o modo de
//leitura, os pinos de dados sao entradas
//Leitura do byte enviando pelo LCD
byte lcdReadByte();
//Envio de um nibble para o LCD
void lcdSendNibble (byte n);

53

//Envio de um byte para o LCD

void lcdSendByte (byte address,byte n);

//Procedimento de inicializacao do LCD

void lcdInitialization();

//Vai para a posicao (x,y) no display; Ex: (2,1)->inicio da segunda
//1linha

void lcdGoToXY (byte x,byte vy);

//Envia um caractere ao LCD

//\f->Limpa display, cursor no comeco da primeira linha
//\n->Move para o comeco da segunda linha
//\b->Backspace

void lcdPutc(char c);

//Obtem o caractere da posicao (x,y) no display

char lcdGetc (byte x,byte vy);

//Funcao que detecta que algum botao foi pressionado
int waitForBtn () ;

/[= //
e MOVIMENTACAO-—---—=--——=-— //
/[== //

//Rotina para habilitar ou desabilitar o acionamento do motor

void motorEnable (short enable);

//Rotina para acionar a roda esquerda do robo

void motorLeft (unsigned long step, short dir);

//Rotina para acionar a roda direta do robo

void motorRight (unsigned long step, short dir);

//Rotina para movimentar o robo para frente em 'dist' mm

void moveFwd (unsigned long dist);

//Rotina para movimentar o robo para tras em 'dist' mm

void moveBwd (unsigned long dist);

//Rotina para girar o robo em torno do proprio eixo no sentido
//anti-horario de 'degree' graus

void turnCcw (unsigned long degree) ;

//Rotina para gira o robo em torno do proprio eixo no sentido horario
//de 'degree' graus

void turnCw (unsigned long degree);

//Faz com que o robo pare imediatamente

void stop();

//Verifica se o robo esta em movimento

short isItMoving();

//Gera o proximo valor de mtx speed

unsigned int nextSpeed(unsigned long remaining, unsigned int speed);
//Escreve na eeprom os valores dos parametros de aceleracao do motor
//de passo

void setupAcceleration();

/[= //
e SENSORTAMENTO-———--——--—-- //
T EE //

//Inicializacao do modulo de sensoriamento

void setupSensor();

//Le o valor gerado pelo sensor de distancia 'sens id'
unsigned int getSensor (unsigned int sens_id);

//Obtem a media de 8 leituras do sensor de distancia 'sens id'
unsigned int getSensorMean (unsigned int sens_id);

[/ mmm //
e APLICATIVO--—--——--—-- //
/[= //

//o robo explora o ambiente desviando de obstaculos
void explore () ;

54

/== //
/) ===—mmm— - PROGRAMA PRINCIPAL-—-—-=-—=-—=—- //
= //
Main () {

int buttons;

unsigned int sensor;

//Inicializa o timerl: recebe clock

//interno (20MHz) e é divido por 2.0u seja,
//incrementa a cada 0,4us[=inv ((fosc/4)/2)]
setup_timer 1(T1 INTERNAL | T1 DIV BY 2);
//Inicializacao do modulo de sensoriamento
setupSensor () ;

//Escreve na eeprom os valores dos parametros da aceleracao do motor
//de passo

setupAcceleration () ;

enable interrupts(global);//habilita as interrupcoes
enable interrupts (int timerl);//habilita a interrupcdo int timerl
mtl speed=0;

mtr speed=0;

mtl step current=0;

mtr step current=0;

mtl step target=0;

mtr step target=0;

mtl counter=0;

mtr counter=0;

motorEnable (OFF) ; //motores desabilitaods

led=0x0F;

btn=0x0F;

btn prev=0x0F;

btn current=0x0F;

//Verificacao do funcionamento dos LEDs de sinalizacao
led=0x0F;

delay ms (500);

led=0;

delay ms (500);

led=0x0F;

delay ms (500);

led=0x0A;

delay ms (500);

led=0x05;

delay ms (500);

led=0;

lcdInitialization();//inicializacao do display
printf (lcdPutc, "\fJerry\nvl.O0");
delay ms (500);

//Menu de opcoes para controlar as funcionalidades do robo
//As opcoes sao exibidas no LCD, e o usuario as acessa atraves do
//botoes
//botao NEXT: proxima opcao do menu
//botao PREV: opcao anterior do menu
//botao OK: ativa a opcao exibida no menu, ou entra no subdiretorio
//correspondente
//botao CANCEL: cancela o aplicativo em execucao, ou retorna ao
//diretorio um nivel acima do diretorio atual
MENU1 :
printf (lcdPutc, "\fExplore ");
buttons=waitForBtn () ;

switch (buttons) {
case NEXT:
goto MENU2;
break;
case PREV:
goto MENU2;
break;
case OK:
explore () ;
break;
case CANCEL:
goto MENU1;
break;
}//endswitch
goto MENU1;

MENU2Z2 :
printf (lcdPutc, "\fTests ");
buttons=waitForBtn () ;
switch (buttons) {
case NEXT:
goto MENU1;
break;
case PREV:
goto MENU1;
break;
case OK:
goto MENUZ2 1;
break;
case CANCEL:
goto MENU2;
break;
}//endswitch
goto MENU2;

MENU2 1:
printf (lcdPutc, "\fMotors ");
buttons=waitForBtn () ;
switch (buttons) {
case NEXT:
goto MENUZ2 2;
break;
case PREV:
goto MENU2 2;
break;
case OK:
goto MENUZ 1 1;
break;
case CANCEL:
goto MENU2;
break;
}//endswitch
goto MENUZ 1;

MENU2 2:
printf (lcdPutc, "\fSensors ");
buttons=waitForBtn () ;
switch (buttons) {
case NEXT:
goto MENU2 1;

55

56

break;
case PREV:
goto MENU2 1;
break;
case OK:
goto MENUZ 2 1;
break;
case CANCEL:
goto MENU2;
break;
}//endswitch
goto MENUZ 2;

MENU2 1 1:
printf (lcdPutc, "\fMove FWD\n200mm ") ;
buttons=waitForBtn () ;
switch (buttons) {
case NEXT:
goto MENUZ2 1 2;
break;
case PREV:
goto MENUZ2 1 4;
break;
case OK:
motorEnable (ON) ;
moveFwd (200) ;
while (isItMoving ());//espera o robo terminar o movimento
motorEnable (OFF) ;
break;
case CANCEL:
goto MENUZ 1;
break;
}//endswitch
goto MENU2 1 1;

MENU2 1 2:
printf (lcdPutc, "\fMove BWD\nl10Omm ") ;
buttons=waitForBtn () ;
switch (buttons) {
case NEXT:
goto MENU2 1 3;
break;
case PREV:
goto MENU2 1 1;
break;
case OK:
motorEnable (ON) ;
moveBwd (100) ;
while (isItMoving());//espera o robo terminar o movimento
motorEnable (OFF) ;
break;
case CANCEL:
goto MENUZ 1;
break;
}//endswitch
goto MENU2 1 2;

MENU2 1 3:
printf (lcdPutc, "\fTurn Ccw\n360deg ");
buttons=waitForBtn () ;

switch (buttons) {
case NEXT:
goto MENU2 1 4;
break;
case PREV:
goto MENUZ 1 2;
break;
case OK:
motorEnable (ON) ;
TurnCcw (360) ;
while (isItMoving());//espera o robo terminar o movimento
motorEnable (OFF) ;
break;
case CANCEL:
goto MENUZ 1;
break;
}//endswitch
goto MENUZ2 1 3;

MENU2 1 4:
printf (lcdPutc, "\fTurn Cw\nl80deg ");
buttons=waitForBtn () ;
switch (buttons) {
case NEXT:
goto MENU2 1 1;
break;
case PREV:
goto MENUZ2 1 3;
break;
case OK:
motorEnable (ON) ;
TurnCw (180) ;
while (isItMoving());//espera o robo terminar o movimento
motorEnable (ON) ;
break;
case CANCEL:
goto MENUZ2 1;
break;
}//endswitch
goto MENU2 1 4;

MENU2 2 1:
printf (lcdPutc, "\fFront \nSensor ");
buttons=waitForBtn () ;
switch (buttons) {
case NEXT:
goto MENUZ 2 2;
break;
case PREV:
goto MENU2 2 4;
break;
case OK:
printf (lcdPutc, "\fSF = %02x ", getSensorMean (SENS FRONT)) ;
delay ms (1000) ;
break;
case CANCEL:
goto MENUZ 2;
break;
}//endswitch
goto MENU2 2 1;

57

MENU2 2 2:
printf (lcdPutc, "\fBack \nSensor ");
buttons=waitForBtn () ;
switch (buttons) {
case NEXT:
goto MENUZ 2 3;
break;
case PREV:
goto MENUZ 2 1;
break;
case OK:
printf (lcdPutc, "\fSB = %02x ", getSensorMean (SENS BACK)) ;
delay ms (1000);
break;
case CANCEL:
goto MENU2 2;
break;
}//endswitch
goto MENU2Z2 2 2;

MENU2 2 3:
printf (lcdPutc, "\fRight \nSensor ");
buttons=waitForBtn () ;
switch (buttons) {
case NEXT:
goto MENUZ2 2 4;
break;
case PREV:
goto MENU2Z2 2 2;
break;
case OK:
printf (lcdPutc, "\fSR = %02x ", getSensorMean (SENS RIGHT)) ;
delay ms (1000) ;
break;
case CANCEL:
goto MENU2 2;
break;
}//endswitch
goto MENU2 2 3;

MENU2 2 4:
printf (lcdPutc, "\fLeft \nSensor ");
buttons=waitForBtn () ;
switch (buttons) {
case NEXT:
goto MENUZ 2 1;
break;
case PREV:
goto MENU2 2 3;
break;
case OK:
printf (lcdPutc, "\fSL = %02x ", getSensorMean (SENS LEFT)) ;
delay ms (1000) ;
break;
case CANCEL:
goto MENUZ 2;
break;
}//endswitch
goto MENU2 2 4;

58

59

}//end main

e //
e INTERRUPCAO PRINCIPAL----—=--—=-—~ //
/== m //

//Rotina de interrupcao (interrompe c/ overflow do timerl) para a
execucao
//das tarefas iterativas do microcontrolador: acionamento dos motores,
//acionamento dos leds, e leitura dos botoes.
#int timerl
opCycle () {

unsigned long mtl remaining;

unsigned long mtr remaining;

//Sempre que a rotina de interrupcao eh chamada
//o timerl eh "setado" para OPCYCLE FREQ, e conta de
// (OPCYCLE FREQ) até 65535(16-bit timer), perfazendo
// (65536 - OPCYCLE FREQ) x 0,4us; neste instante a
//interrupcao eh acionada novamente
set timerl (OPCYCLE FREQ) ;
//MOTOR DRIVE
if (mtl step target!=0) {

if (mtl counter<read eeprom(mtl speed))//temporizador para gerar a

//frequencia de acionamento

mtl counter++;

else(
output low (STEP_LEFT);//pulso de comando de passo
delay us(4);

output high (STEP LEFT);

mtl counter=0;

mtl step current++;

mtl remaining=mtl step target-mtl step current;

mtl speed=nextSpeed(mtl remaining, mtl speed);

if (mtl remaining==0) {//verifica se o motor atingiu a posicao
mtl step target=0;
mtl step current=0;
mtl speed=0;

}//endif mtl remaining

}//endelse
}//endif mtl step target

if (mtr step target!=0) {
if (mtr counter<read eeprom(mtr speed))//temporizador para gerar a
//frequencia de acionamento
mtr counter++;
elsef
output low (STEP_RIGHT);//pulso de comando de passo
delay us(4);
output high (STEP_RIGHT) ;
mtr counter=0;
mtr step current++;
mtr remaining=mtr step target-mtr step current;
mtr speed=nextSpeed (mtr remaining, mtr speed);
if (mtr remaining==0) {//verifica se o motor atingiu a posicao
mtr step target=0;
mtr step current=0;
mtr speed=0;
}//endif mtr remaining

}//endelse
}//endif mtr step target

//BTNs
btn prev=btn current;
btn current=input (SW2) ;
btn current=(btn current<<l)+input (SW3) ;
btn current=(btn_ current<<l)+input (SW4) ;
btn current=(btn_ current<<l)+input (SW5) ;
if (btn prev==btn current)
btn=btn current;
//LEDs
if ((led&0x01)==0x01)
output high (LED4) ;
else
output low (LED4) ;
if ((led&0x02)==0x02)
output high (LED3) ;
else
output low (LED3);
if ((led&0x04)==0x04)
output high (LED2) ;
else
output low (LED2) ;
if ((led&0x08)==0x08)
output high (LED1) ;
else
output low (LED1) ;
}//end interrupcao

//Leitura do byte enviando pelo LCD
byte lcdReadByte () {
byte low,high;

set tris b (LCD READ);
lcd.rw = 1;

delay cycles(1);
lcd.en = 1;

delay cycles(1);

high = lcd.data;
lcd.en = 0;

delay cycles(1);
lcd.en = 1;

delay us(1);

low = lcd.data;
lcd.en = 0;

set tris b (LCD WRITE);

return ((high<<4) |low) ;
}

//Envio de um nibble para o LCD
void lcdSendNibble (byte n) {
lcd.data=n;
delay cycles(1);
lcd.en=1;

delay us(2);
lcd.en=0;
}

//Envio de um byte para o LCD
void lcdSendByte (byte address, byte n) {
led.rs=0;
while (bit test (lcdReadByte(), 7));
lcd.rs=address;
delay cycles(1);
lcd.rw=0;
delay cycles(1);
lcd.en=0;
lcdSendNibble (n>>4) ;
lcdSendNibble (n&0xf) ;
}

//Procedimento de inicializacao do LCD
void lcdInitialization() {
byte 1i;

set _tris b (LCD WRITE);

lcd.rs = 0;

lcd.rw = 0;

lcd.en = 0;

delay ms (15);

for (i=1;1<=3;1i++)
lcdSendNibble (3) ;
delay ms(5);

}

lcdSendNibble (2) ;

for (1=0;1<=3;1i++)
lcdSendByte (0, LCD_INIT STRINGI[i]);

lcdSendByte (0, O0x0E) ;

lcdSendByte (0, 0x01) ;

}

//Vai para a posicao (x,y) no display; Ex: (2,1)->inicio da segunda
//linha
void lcdGoToXY (byte x, byte y) {

byte address;

if (y!=1)
address=LCD LINE TWO;
else

address=0;
address+=x-1;
lcdSendByte (0, 0x80 |address) ;
}

//Envia um caractere ao LCD
//\f->Limpa display, cursor no comeco da primeira linha
//\n->Move para o comeco da segunda linha
//\b->Backspace
void lcdPutc(char c) {
switch (c) {
case '"\f':
lcdSendByte (0,1);
delay ms(2);
break;
case '\n'

61

62

lcdGoToXY (1,2);
break;
case '"\b':
lcdSendByte (0, 0x10) ;
lcdSendByte (1, 0x20) ;
break;
default:
lcdSendByte (1,c);
break;
}//endswitch
}//end lcdPutc

//Obtem o caractere da posicao (x,y) no display
char lcdGetc (byte x, byte vy){
char value;

1cdGoToXY (x,V) ;
lcd.rs=1;
value=1lcdReadByte () ;
lcd.rs=0;

return (value) ;

}

//Funcao que detecta que algum botao foi pressionado
int waitForBtn () {
int temp;

do{

temp=btn;
}while ((temp&0x0F)==0x0F) ;
while ((btn&0x0F) !=0x0F) ;

return ((temp&0x0F)) ;
}//end waitForBtn

/[= //
e MOVIMENTACAO-—-—--—=--——=-— //
i //

//Rotina para habilitar ou desabilitar o acionamento do motor
void motorEnable (short enable) {
if (enable==0N)
output high (MT ENABLE) ;
else
output low (MT_ ENABLE) ;
}

//Rotina para acionar a roda esquerda
void motorLeft (unsigned long step, short dir) {
//espera o motor completar o numero de passos do comando anterior
while (mtl step target!=0);
//sentido de movimento para a roda esquerda do robo
if (dir==FWD)
output low(DIR_LEFT);//motor esquerdo gira no sentido CCW
else//if (dir==BWD)
output high (DIR LEFT);//motor esquerdo gira no sentido CW
mtl step target=step;//numero de passos a ser dado pelo motor

}

63

//Rotina para acionar a roda direita
void motorRight (unsigned long step, short dir) {
//espera o motor completar o numero de passos do comando anterior
while (mtr step target!=0);
//sentido de movimento para a roda direita do robo
if (dir==FWD)
output high (DIR RIGHT);//motor direito gira no sentido CW
else//if (dir==BWD)
output low (DIR RIGHT);//motor direito gira no sentido CCW
mtr step target=step;//numero de passos a ser dado pelo motor

}

//Rotina para movimentar o robo para frente em 'dist' mm
void moveFwd (unsigned long dist) {
unsigned long step;

//1 volta = 200 passos = 161,16mm; 200/ (161,16)=~1,24=31/25
step=(dist*31)/25;//'dist' nao deve ser maior que 52851 para ocorrer
//overflow em 'step'
motorLeft (step, FWD);
motorRight (step, FWD) ;

}

//Rotina para movimentar o robo para tras em 'dist' mm
void moveBwd (unsigned long dist) {
unsigned long step;

//1 volta = 200 passos = 161,16mm; 200/ (161,16)=~1,24=31/25
step=(dist*31)/25;//'dist' nao deve ser maior que 52851 para ocorrer
//overflow em 'step'
motorLeft (step, BWD) ;
motorRight (step, BWD) ;

}

//Rotina para girar o robo em torno do proprio eixo no sentido
//anti-horario de 'degree' graus
void turnCcw (unsigned long degree) {

unsigned long step;

//Para girar de 360 graus em torno do proprio eixo, cada roda deve
//percorrer um circulo de
//diametro 'd', onde 'd' eh distancia entre as rodas (d=82,3mm),
//portanto
//step = degree* [(pi*d)*(31/25)]1/360=~(320/360) *degree=(8/9) *degree
step=(8*degree) /9;
motorLeft (step, BWD);
motorRight (step, FWD);

}

//Rotina para gira o robo em torno do proprio eixo no sentido horario
//de 'degree' graus
void turnCw (unsigned long degree) {

unsigned long step;

//Para girar de 360 graus em torno do proprio eixo, cada roda deve
//percorrer um circulo de
//diametro 'd', onde 'd' eh distancia entre as rodas (d=82,3mm),

//portanto
//step = degree* [(pi*d)*(31/25)]1/360=~(320/360) *degree=(8/9) *degree

step=(8*degree) /9;

motorLeft (step, FWD);
motorRight (step, BWD) ;
}

//Faz com que o robo pare imediatamente
void stop () {

mtl speed=0;

mtr speed=0;

mtl step current=0;

mtr step current=0;

mtl step target=0;

mtr step target=0;

mtl counter=0;

mtr counter=0;

}

//Verifica se o robo esta em movimento
short isItMoving() {

if ((mtl step target!=0) || (mtr_ step target!=0))
return (TRUE) ; //robo em movimento
else

return (FALSE) ; //robo parado
}

//Gera o proximo valor de mtx speed
unsigned int nextSpeed(unsigned long remaining,

unsigned int speed) {

//Controla a velocidade para (des)acelerar o motor

if (remaining> (long) speed)

speed+t++;
else
speed--;

//Limites de velocidade
if (speed>SPEED MAX)
speed=SPEED MAX;
if (speed<0)
speed=0;
return (speed) ;

}

//escreve os valores das constantes para aceleracao do motor

void setupAcceleration () {
write eeprom(0,0xFF);//cte p/ vel=0
write eeprom(l,0x9E);//cte p/ vel=1l, etc.
write eeprom(2,0x41
write eeprom(3,0x32
write eeprom (4, 0x2A

’

’

)
)
)
) 4
write eeprom(5,0x25);
)
)
)
)

’

(
(
(
(
(
write eeprom(6,0x22
write eeprom(7,0x1F);
(
(
(
(
(
(

’

’

write eeprom(8,0x1D
write eeprom (9, 0x1B

’

write eeprom(10,0x1A)

write eeprom(l1l,0x18);
)
)

’

write eeprom(12,0x17
write eeprom(13,0x16

’

64

//Inicializacao do modulo de sensoriamento

void setupSensor () {
setup port a (A ANALOG);//pinos ANO, AN1, AN2, AN3, AN4 analogicos;
//Vref+ = vdd, Vref- = Vss
setup adc (ADC_CLOCK DIV 32);//Tad = 32*Tosc = 1,6us (Tad = tempo de
//conversao de cada bit)

}

//Le o valor gerado pelo sensor de distancia 'sens id'
unsigned int getSensor (unsigned int sens_id) {
unsigned int wvalue;

if (sens_id<=4) {
set_adc_channel (sens_id);// sens_id: canal de entrada
//analogica->ANO, ...,AN4
delay us(50);//tempo de conversao AD
value=read ADC()>>2;//read ADC retorna um valor de 10 bit;
//value->8 bits
return (value) ;
}
else//sens_id invalido
return (0xff) ;

}

//Obtem a media de 8 leituras do sensor de distancia 'sens id'
unsigned int getSensorMean (unsigned int sens_id) {

int 1i;

long sensor;

sensor=0;

for (i=1; 1<=8; i+4++)//somatorio de 8 leituras do sensor

sensor=sensor+ (long)getSensor (sens_id);
sensor=sensor>>3;//equivale a dividir o somatorio por 8

return ((unsigned int) sensor);

e //
/) —mmm APLICATIVOS--—————————— //
/[= //

//0 robo explora o ambiente desviando de obstaculos
void explore () {
short exp canceled;
unsigned int i, rand;
//sensores frontal, traseiro, lateral direito, e lateral esquerdo,
respectivamente
long sensF, sensB, sensR, sensL;

printf (lcdPutc, "\fExplor- \n-ing... ");
delay ms (1000) ;
printf (lcdPutc, "\fPress \nCancel ");
delay ms (1000) ;
printf (lcdPutc, "\fto abort\nmission ");
delay ms(1000);
motorEnable (ON) ;
exp canceled=FALSE;

EXP AGAIN:
if (exp_canceled==FALSE) {

65

66

sensF=getSensorMean (SENS_FRONT) ;
sensB=getSensorMean (SENS_ BACK) ;
sensR=getSensorMean (SENS RIGHT) ;
sensL=getSensorMean (SENS_ LEFT) ;
//Imprime no display os valores lidos dos sensores
printf (lcdPutc, "\f %02x %02x\n %02x %02x ", sensF, sensB,
sensR, sensL);
//Faz 20 tentativas para verificar se ha caminho livre
for (1i=1; 1<=20; 1++) {
//Gera um numero "aleatorio"
rand= (unsigned int) (get timerl () §0x00FF) ;
//Move para frente
if (rand<=63) {
if (sensF<=LIMIT DIST)//o sensor gera um valor inversamente
//proporcional a distancia
goto EXP_FWD;
}//endif FWD
//Move para tras
else if (rand<=127) {
if(sensB<=LIMIT_DIST)
goto EXP_ BWD;
}//endif BWD
//Move para a direita
else 1f (rand<=191) {
if(sensR<=LIMIT_DIST)
goto EXP RIGHT;
}//endif RIGHT
//Move para a esquerda
else(
if(sensL<=LIMIT_DIST)
goto EXP LEFT;
}//endelse LEFT
}//endfor
//0 robo detectou que esta cercado de obstaculos, e para!
stop ()
delay ms (500);
printf (lcdPutc, "\f*JERRY**\n*LOCKED*") ;
delay ms (1000) ;
exp_canceled=! ((short) (btn&0x01));//verifica se o botao CANCEL foi
//pressionado
goto EXP_ AGAIN;
EXP_FWD:
stop () ;
moveFwd (5000) ; //move 5000mm=5m
goto EXP OBSTACLE;
EXP_ BWD:
stop () s
turnCcw (180);//gira 180 graus
moveFwd (5000) ; //move 5000mm=5m
goto EXP_ OBSTACLE;
EXP LEFT:
stop () s
turnCcw (90) ;//gira (90 graus) para a esquerda
moveFwd (5000) ; //move 5000mm=5m
goto EXP_ OBSTACLE;
EXP_ RIGHT:
stop () s
turnCw (90) ; //gira 90 graus para a direita
moveFwd (5000) ; //move 5000mm=5m
goto EXP_ OBSTACLE;

EXP OBSTACLE:
//Verifica obstaculos na direcao do movimento ou se o robo
//terminou o trajeto ou se o botao CANCEL foi pressionado

do {
sensF=getSensorMean (SENS_ FRONT) ;
exp canceled=! ((short) (btn&0x01));

t}while ((sensF<=LIMIT DIST)&& (isItMoving()) && (lexp canceled));
goto EXP_ AGAIN;
}//endif exp canceled

motorEnable (OFF) ;
printf (lcdPutc, "\fMISSION*\n*ABORTED") ;

delay ms (2000);
}//end explore

67

